Accepted Manuscript

Title: The impact of particular components of the PSO-based algorithm solving the Dynamic Vehicle Routing Problem

Author: Michał Okulewicz Jacek Mańdziuk

PII: S1568-4946(17)30257-0

DOI: http://dx.doi.org/doi:10.1016/j.asoc.2017.04.070

Reference: ASOC 4208

To appear in: Applied Soft Computing

Received date: 2-10-2016 Revised date: 29-4-2017 Accepted date: 30-4-2017

Please cite this article as: Michal Okulewicz, Jacek Mańdziuk, The impact of particular components of the PSO-based algorithm solving the Dynamic Vehicle Routing Problem, <![CDATA[Applied Soft Computing Journal]]> (2017), http://dx.doi.org/10.1016/j.asoc.2017.04.070

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The impact of particular components of the PSO-based algorithm solving the Dynamic Vehicle Routing Problem

Michał Okulewicz^{a,*}, Jacek Mańdziuk^a

^a Warsaw University of Technology Faculty of Mathematics and Information Science Koszykowa 75, 00-662 Warsaw POLAND

Abstract

This paper presents and analyzes a Two-Phase Multi-Swarm Particle Swarm Optimizer (2MPSO) solving the Dynamic Vehicle Routing Problem (DVRP). The research presented in this paper focuses on finding a configuration of several optimization improvement techniques, dedicated to solving dynamic optimization problems, within the 2MPSO framework. Techniques, whose impact on results achieved for DVRP is analyzed, include: solving the current state of a problem with a capacitated clustering and routing heuristic algorithms, solving requests-to-vehicles assignment by the PSO algorithm, route optimization by a separate instance of the PSO algorithm, and knowledge transfer between subsequent states of the problem. The results obtained by the best chosen configuration of the 2MPSO are compared with the state-of-the-art literature results on a popular set of benchmark instances.

Our study shows that strong results achieved by 2MPSO should be attributed to three factors: generating initial solutions with a clustering heuristic, optimizing the requests-to-vehicle assignment with a metaheuristic approach, direct passing of solutions obtained in the previous stage (times step) of the problem solving procedure to the next stage. Additionally, 2MPSO outperforms the average results obtained by other algorithms presented in the literature, both in the time limited experiments, as well as those restricted by the number of fitness function evaluations.

Keywords: Dynamic Vehicle Routing Problem, Particle Swarm Optimization, Vehicle Routing Problem, Dynamic Optimization

^{*}Corresponding author

Email addresses: M.Okulewicz@mini.pw.edu.pl (Michał Okulewicz),

J.Mandziuk@mini.pw.edu.pl (Jacek Mańdziuk)

Download English Version:

https://daneshyari.com/en/article/4963195

Download Persian Version:

https://daneshyari.com/article/4963195

<u>Daneshyari.com</u>