
Applied Soft Computing 53 (2017) 88–96

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Not all PBILs are the same: Unveiling the different learning
mechanisms of PBIL variants

M. Zangaria,∗, R. Santanab, A. Mendiburub, A.T.R. Pozoa

a DInf – Federal University of Parana, CP: 19081, CEP 19031-970, Curitiba, Brazil
b Intelligent System Group, University of the Basque Country, San Sebastian, Spain

a r t i c l e i n f o

Article history:
Received 2 September 2015
Received in revised form
10 November 2016
Accepted 21 December 2016
Available online 3 January 2017

Keywords:
Probabilistic modeling
PBIL
Estimation of distribution algorithm

a b s t r a c t

Model-based optimization using probabilistic modeling of the search space is one of the areas where
research on evolutionary algorithms (EAs) has considerably advanced in recent years. The population-
based incremental algorithm (PBIL) is one of the first algorithms of its kind and it has been extensively
applied to many optimization problems. In this paper we show that the different applications of PBIL
reported in the literature correspond, in fact, to two essentially different algorithms, which are defined
by the way the learning step is implemented. We analytically and empirically study the impact of the
learning method on the search behavior of the algorithm. As a result of our research, we show examples
in which the choice of a PBIL variant can produce qualitatively different outputs of the search process.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of Distribution Algorithms (EDAs) are model-based
evolutionary algorithms that have been successfully applied for
solving combinatorial optimization problems [27,42,30,35]. These
algorithms, instead of using the classical genetic operators, use
machine learning techniques to estimate a probability distribution
associated with the set of most promising solutions, and use this
probabilistic model to sample new candidate solutions.

The population-based incremental learning algorithm (PBIL) [2]
is one of the simplest model-based evolutionary algorithms and
arguably one of the first EDAs [35]. The genesis of PBIL was largely
influenced by previous work on population-based recombination in
genetic algorithms (GAs) [43] and the concept of competitive learn-
ing, as applied in neural networks [22]. In a string of papers, Baluja
et al. [2,5,3], described how the exchange of information between
solutions, implicit in the behavior of crossover operators, could be
efficiently transformed in the explicit manipulation of probabilistic
vectors describing the statistics of the population.

In simple terms, at each generation, PBIL works by updating a
vector describing the univariate statistics of the best solutions. The

∗ Corresponding author.
E-mail addresses: murilo.zangari@gmail.com (M. Zangari),

roberto.santana@ehu.eus (R. Santana), alexander.mendiburu@ehu.eus
(A. Mendiburu).

update of this simple model is governed by a parameter that works
as a learning rate. The model is used to generate new candidate
solutions and the loop comprising selection, model learning, and
model sampling continues until a stop criterion is met.

The simplicity of PBIL and its ability to retain much of the
performance of GAs with uniform and one-point crossover oper-
ators has contributed to its popularity. In general, some of the
most praised characteristics of PBIL are: its easy implementa-
tion [7,15] in comparison to more complex algorithms, and its
robustness [12]. Moreover, PBIL has been applied to a variety
of real-world problems including energy applications [12,18,19],
automatic control [15], biomedical problems [7,23,31], robotics
[25], and other problems [1,8,9,40,10,11]. Also, extensions for con-
tinuous problems have been introduced [41,46,11]. Usually, in
these works, the authors have proposed PBIL algorithms with some
enhancements for solving the target problem, achieving competi-
tive results (e.g., self-adaptive approach [12], multiple-population
PBIL [19], hybrid approaches [15], different learning and sampling
procedures to guarantee a higher diversity [44], parallel schemes
[18]).

Some of the findings from the PBIL applications have been: (i)
PBIL improves the behavior of simple genetic algorithms [45]; (ii)
PBIL algorithms outperform conventional GA approaches [25]; (iii)
PBIL can be outperformed by EDAs that use more complex models
or tuned search strategies [1,8,23].

Moreover, theoretical analyses of PBIL have been conducted.
These papers have focused on the convergence proof of the

http://dx.doi.org/10.1016/j.asoc.2016.12.045
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.12.045
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.12.045&domain=pdf
mailto:murilo.zangari@gmail.com
mailto:roberto.santana@ehu.eus
mailto:alexander.mendiburu@ehu.eus
dx.doi.org/10.1016/j.asoc.2016.12.045

M. Zangari et al. / Applied Soft Computing 53 (2017) 88–96 89

algorithm and its expected behavior regarding its ability to find
local optima of the function [21,28,38,45].

Notably, and this is the main claim presented in this paper, the
numerous reported applications of the discrete PBIL can be split
into two main groups according to the way the learning step of
the algorithm is interpreted. The critical aspect of this split, which
is unveiled in this paper for the first time, is that two essentially
different algorithms (in terms of their learning mechanisms) are
considered in the current literature as a unique algorithm. This
fact has profound implications for the applications of PBIL, the
comparison with other methods, and the regarding reproducibil-
ity of the results reported for the algorithm. Depending on the
choice of PBIL learning inadvently made by the authors, the results
of the experiments and the conclusions may be different. There-
fore, it is important to throw light on this question and report
the existence of these two interpretations. Furthermore, for one
of the two PBIL variants that are described in the literature, the
algorithm is not well specified, in the sense that the commonly
used description of the algorithm allows different implementa-
tions and as we show in the paper, from theoretical and empirical
perspectives, the changes in the implementations can lead to
completely different results. This question is further discussed in
Sections 2 and 3.

We show that the differences between the identified PBIL vari-
ants are critical in terms of the effect that they can produce in
the search process. We conduct an analysis from a theoretical and
empirical point of view. On the theoretical side, we provide equa-
tions that describe what is the expected form of probabilistic model
(mean univariate probabilities) for the two PBIL variants. On the
empirical side, we apply the variants for solving a set of well-known
benchmark optimization functions. Our analysis has shown that not
all PBILs are the same and the differences in the learning mecha-
nism have a major impact on their search ability. The authors of this
paper did not find any previous published analysis of the fact the
PBIL algorithm has different interpretations regarding its learning
mechanism.

The paper is organized as follows: Section 2 introduces PBIL and
discusses the variants reported in the literature. In Section 3, we
derive formulas for computing the mean univariate probabilities
from the two PBIL variants when all possible orders are considered.
Section 4 presents the experimental studies using a number of well-
known optimization functions. In Section 5, we conclude the paper
and discuss topics for future research.

2. PBIL

Let X = (X1, . . ., Xn) denote a vector of discrete n random vari-
ables. x = (x1, . . ., xn) is used to denote an assignment to the variables
and x ∈ {0, 1}n. xj represents the assignment to the jth variable of
the corresponding solution. We work with positive distributions
denoted by p. p(xI) denotes the marginal probability for XI = xI.

A basic EDA follows these steps: (i) The solutions in popula-
tion Pop are initialized randomly. (ii) A selection scheme is used
to select a set of the most promising solutions S ⊂ Pop; an example
of selection operator is the truncation selection with truncation
parameter T = 0.5, where the size of S equals half of the population
size of Pop. (iii) The univariate probabilistic vector p(x) = p(x1), . . .,
p(xn) is updated using the solutions in S. (iv) Sampling the prob-
abilistic model learned, a new set of candidate solutions Snew is
created; and then, (v) the current population Pop is set with the
best solutions from the previous population and the new sampled
solutions. The stop condition is usually the maximum number of
generations.

Algorithm 1 shows the pseudocode of PBIL, adapted from [2],
in which the algorithm was first introduced. The parameter ˛

represents the learning rate, and � is the probability of mutation
occurring in each variable.

Algorithm 1. PBIL (adapted from the original formulation [2])
1 p(x)← initialize each position of the

probability vector p(xj) = 0.5 ∀ j ∈ 1, . . ., n
2 Pop← Generate N solutions randomly

3 For each solution x, compute its fitness

function F(x)
4 While a termination condition is not met

5 best← the solution corresponding to best

fitness

6 For each variable, the corresponding entry

probability is updated

7 p(xj) = (1.0 − ˛) * p(xj) + (̨ * bestj)
8 Generate a new solution y sampling from p(x)
9 For each variable, if (random(0, 1) < �)

yj = 1 − yj

10 Add the new sampled solution y to Pop
11 End while

One distinguished feature of this PBIL presented in Algorithm 1
is that the update of the univariate vector is done using the best
solution found in each generation.

It is also acknowledged in [2] that, when large populations are
used, adjusting the prototype vector based upon the single best
solution vector in each generation has the potential of ignoring
a large amount of the work and exploration performed by the
algorithm. The straightforward solution proposed is to move the
prototype vector in the direction of the best (S � Pop) solutions. An
enumeration regarding possible ways to implement this variant is
presented in [2]. One of the suggested ideas is to move the probabil-
ity vector equally in the direction of each of the selected solutions.
An implementation of this idea is presented in [5].

The main differences in the learning mechanism between the
PBIL presented in [5] and the original algorithm are described in
the pseudocode of Algorithm 2. Two characteristics of this variant
are that the solutions in Pop are first sorted according to the evalu-
ation of the solutions (Step 1), and the probabilistic model learned
is sensitive to this order (Steps 2 and 3). This dependence on the
order is due to the fact that the values of the probabilistic vector are
iteratively modified within the loop that passes over all the selected
solutions. The last solution vector in the order will have a stronger
impact on the final configuration of the probability vector. We call
this variant the order-sensitive PBIL, or in short PBIL-OS.

Algorithm 2. PBIL (Order-sensitive variant) learning procedure
[5]
1 Pop = sort(Pop)

Update Probability Vector towards best solutions
2 For i = 1 to NUMBER OF SOLUTIONS TO UPDATE FROM

(S) do

3 For j = 1 to n do

p(xj) = (1.0 − ˛) ∗ p(xj) + (̨ ∗ xi
j
)

Finally, another interpretation of PBIL assumes that, before
updating the probability vector, a vector r(x) with the univariate
probabilities of the S selected solutions is computed. The auxiliary
vector r(x) is then used to update the vector of the univariate proba-
bilities. The pseudocode of this variant is shown in Algorithm 3. We
call this variant PBIL-iUMDA, because the strategy used to update
the probabilities is the same as that proposed for the iUMDA in [34].

Algorithm 3. PBIL (iUMDA variant) learning procedure [34]
1 # (Compute current probabilities)

2 For j = 1 to n do r(xj) =
∑S

i=1
xi

j
S

(Update Probability Vector)
3 For j = 1 to n do p(xj) = (1.0 − ˛) * p(xj) + ̨ * r(xj)

A considerable amount of work has been published on
these two main PBIL variants without recognizing the difference

Download English Version:

https://daneshyari.com/en/article/4963221

Download Persian Version:

https://daneshyari.com/article/4963221

Daneshyari.com

https://daneshyari.com/en/article/4963221
https://daneshyari.com/article/4963221
https://daneshyari.com

