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a  b  s  t  r  a  c  t

This paper  deals  with  the  optimal  planning  of  vaccination  campaigns,  using  an  evolutionary  multiobjec-
tive  optimization  algorithm  and  a  stochastic  simulation  of  the  epidemics  dynamics  in  order  to determine
robust  vaccination  policies.  A  biobjective  model  is  formulated,  considering  the  minimization  of control
costs  and  number  of infected  individuals.  The  decision  variables  include  number  of  campaigns,  percentage
of  vaccination  and  time  interval  between  each  campaign.  A  SIR  (Susceptible-Infected-Recovered)  model
and  an  IBM  (Individual-Based  Model)  are  employed  for  representing  the  epidemics.  A  two-stage  opti-
mization  process  is  proposed:  a  set of nondominated  steady-state  regimes  is  obtained  and  one  of  them is
selected  to  be concatenated  to  the  transient  regime  vaccination  policies.  An  evolutionary  multiobjective
optimization  algorithm  is proposed,  with  a local  search  procedure  based  on quadratic  approximation
supported  by  a hash  table  information  storage.  The  resulting  nondominated  solutions  are  simulated  in
the IBM,  in  order  to detect  and  discard  the  non-robust  solutions.  Final  results  show  that  optimal  robust
vaccination  campaigns  with  different  trade-offs  can  be designed,  allowing  policymakers  to choose  the
best strategy  according  to the monetary  cost  and  the  expected  efficacy.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

An epidemic is defined as the occurrence of cases of a disease in
excess of what is normally expected in a population. An endemic
is a relatively stable pattern of occurrence of a transmissible dis-
ease in a population group with relatively high prevalence and
incidence. A big challenge in public health is related to the plan-
ning of vaccination campaigns which aim to eradicate a disease,
or to control its spread avoiding large epidemic peaks or signif-
icant endemic states, with the minimum possible cost [24]. This
paper presents a multiobjective framework, considering a compro-
mise between cost and effectiveness, to determine nondominated
and robust policies to control a disease through impulsive vaccina-
tion. A nondominated solution is not worse than any other possible
one in both cost and effectiveness, and a robust solution does not
degrade significantly its performance when different realizations
of the underlying stochastic processes are considered.

∗ Corresponding author.
E-mail address: taka@mat.ufmg.br (R.H.C. Takahashi).

Many works have applied control theory to develop optimal
strategies to control infectious diseases [25,28,26,27]. Most of them
used pulse vaccination, defined as an impulsive control composed
by the repeated application of a fixed vaccination ratio in discrete
instants [2,20,12]. Stochastic programming frameworks and mono-
objective optimization techniques have also been used [31–34].
Different methodologies to the optimization of vaccination cam-
paigns can be found in the literature [29–31,26].

From the modelling perspective, some articles consider generic
epidemic models (such as SIR) [28,25], while other ones use specific
models of some specific epidemics such as influenza [29,31,32]. In
[32], genetic algorithms were applied with specific operators and
stochastic epidemic simulations to find good vaccine distributions
to minimize the number of illnesses or deaths in the population,
considering an influenza pandemic with age-specific illness attack,
given limited quantities of vaccine. More recently, [26] proposed
a mono-objective strategy using a Differential Evolution algorithm
and a SEIR model with age-structure in order to find the optimal
vaccine distribution that minimizes the total number of infected.
The work [27] applied a standard multiobjective genetic algorithm
to control dengue epidemic using insecticide and sterile males,
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minimizing both social and economic costs via alternated step-size
control.

The trade-off between the effectiveness of policies to control
the epidemics and the cost of its implementation has been already
recognized in some other works, which already employed multi-
objective optimization approaches for the synthesis of vaccination
policies. This work, developed within this framework, also presents
the following specific methodological contributions:

(i) Every epidemics process will present two rather distinct
dynamic regimes: a transient phase and a steady-state phase.
Whilst the transient phase will require a time-varying control
policy in order to perform an optimal control, the steady-state
phase will be tackled better by a steady-state control, since
its synthesis will become more precise under a smaller num-
ber of degrees of freedom. In this work, the control policy is
built as a concatenation of a transient control sequence fol-
lowed by a time-invariant sequence. This allows an enhanced
efficiency of the control policy, as illustrated in Section 6. The
usual methodology of promoting a single vaccination policy
along all the duration of the epidemic process leads to poli-
cies that can be far from the optimality [24,23,12]. Compared
to the previous works, the approach presented here adds new
degrees of freedom to the problem by allowing different sizes
of pulse control action in different instants and also allowing
the application of pulses at arbitrary time instants in the two
phases. Given a time horizon, a control policy solution is repre-
sented here by the number of vaccination campaigns, the time
instants when each one should be performed as well as the
number of individuals to be immunized in each campaign. The
search space used in this work includes the intervals found in
reference [20], which theoretically guarantee that the infected
population tends to zero over time.

(ii) The synthesis of control policy is performed using a differ-
ential equation based epidemics model, which represents the
average behavior of the epidemics on the population. The sim-
ulation of this model is computationally affordable, which
makes this kind of model suitable for being used inside an opti-
mization algorithm in which the model is run several times.
Although this work considers Susceptible-Infected-Recovered
endemic model (SIR) [15,2,12], it should be noticed that the
general methodology proposed here can be employed using
other differential equation models.

(iii) However, as the actual behavior of the epidemics on a finite-
size population will be endowed with a stochastic variation,
a simulation that takes such effects into account becomes
necessary in order to perform a more realistic evaluation of
the outcome of the application of the vaccination policy. An
Individual-Based Model (IBM) [11] which corresponds in aver-
age to the differential equation model is employed here in
order to evaluate the set of policies that emerge from the multi-
objective optimization, in order to assess the sensitivity of each
policy to the stochasticity. This model is also employed in order
to estimate some stochastic performance measures of the vac-
cination policy, such as the probability of disease eradication.
Such an analysis was not performed in any former work.

In addition to the new methodology, some computational
improvements have been proposed too. The hybrid multiobjec-
tive strategy was improved with the inclusion of a hash table to
avoid re-evaluating of repeated solutions and some modifications
in genetic operators. Finally, an enhanced IBM version is applied
to find a robust nondominated set of polices. The probabilities of
disease control and extinction for each policy are computed now.
The new framework to epidemics control proposed here can be
seen as an evolution of some previous works by the authors. In

[6], a canonical NSGA-II was  used to solve a multiobjective prob-
lem whose solutions were transient-phase vaccination campaigns.
The objectives represented the cost and the efficacy of the con-
trol. Also, a rudimentary IBM version was applied to simulate the
random behavior of the final solutions, re-evaluating the optimal
polices in order to consider just their median values in a classi-
cal nondominated sorting procedure. In [8], the performance of an
NSGA-II algorithm with quadratic local search was  compared with
the performance of its canonical version in order to solve the epi-
demic control problem, still considering only the transient-phase
vaccination campaigns.

This paper is organized as follows: Section 2 describes the
epidemiological models; Section 3 presents the multiobjective
optimization models developed in this work; Section 4 shows the
proposed optimization engine; Section 5 presents the experiment
planning; Section 6 shows the results of the case study; before
finalize this paper, Section 7 indicates that the proposed optimiza-
tion engine is superior than the canonical version in many disease
configurations; and Section 8 concludes the paper.

2. Epidemiological models

The next two subsections explain the SIR model and its stochas-
tic version IBM.

2.1. SIR model

The SIR model describes the dynamics of the susceptible,
infected and recovered individuals in a population during the evo-
lution of the disease, in an average way. It can be used to describe
contagious viruses that can be transmitted among individuals, like
measles and rubella. The virus infects susceptible individuals who
become infectious, and after some time they recover and become
immune. When a vaccine exists and is applied to a susceptible
individual, this also becomes a “recovered” [12].

The SIR model uses the strategy of compartments, related by a
system of three differential equations. The initial value problem is
presented in Eq. (1). The variables S, I and R represent, respectively,
the number of susceptible, infected and recovered individuals. The
term N represents the number of individuals, which is supposed to
be constant, S(t) + I(t) + R(t) = N, ∀ t ≥ 0. The constant parameters are
the transmission rate ˇ, the recovery rate of infected individuals
� , and the birth/mortality rate �. The measurement units of these
parameters are the inverse of time unit. The birth rate and the mor-
tality rate are assumed to be equal, in order to keep the population
size constant. The values 1/�  and 1/� represent the average time of
infection and the average lifetime of an individual, respectively, in
time units (t.u.), w.l.g.. This model is realistic and mathematically
and epidemiologically well-conditioned [12].

dS

dt
= �N − �S − ˇIS

N
, S(0) ≥ 0,

dI

dt
= ˇIS

N
− �I − �I, I(0) ≥ 0,

dR

dt
= �I − �R, R(0) ≥ 0,

(1)

By dividing Eq. (1) by N, considered constant, the system
becomes expressed by the fraction of susceptible, s, and infected, i.
This leads to Eq. (2). Therefore, the recovered fraction is computed
as r(t) = 1 − s(t) − i(t).

ds

dt
= � − �s − ˇis, s(0) ≥ 0,

di

dt
= ˇis − �i − �i, i(0) ≥ 0,

(2)
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