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a  b  s  t  r  a  c  t

Cluster  ensemble  has  become  a general  technique  for combining  multiple  clustering  partitions.  There  are
various  cluster  ensemble  methods  to be used  in  real  applications.  Recently,  Zhang  et  al.  (2012)  considered
a generalized  adjusted  Rand  index  (ARI)  for cluster  ensembles  by using  a consensus  matrix  to evaluate
ARI  values.  However,  Zhang’s  method  for  cluster  ensembles  cannot  treat  the  cases  in  fuzzy partitions  and
fuzzy cluster  ensembles.  In this  paper  we  propose  evaluation  measures  for cluster  ensembles  based  on
the proposed  fuzzy  generalized  Rand  index  (FGRI).  We  first use  a graph  and relation  matrices  to convert
a  membership  matrix  into  a sign  relation  matrix,  and  have  the  trace  of matrix  multiplication  to calculate
similarity  measures.  We then  use  the FGRI  to  broaden  the  scope  of  the  RI  for  considering  other  scenarios
so  that  it can  treat  the following  situations:  (1)  between  a fuzzy  cluster  ensemble  and  a  crisp  partition,
(2)  between  a  fuzzy  cluster  ensemble  and  a cluster  ensemble,  (3)  between  a fuzzy  cluster  ensemble  and
a  fuzzy  partition,  (4)  between  two fuzzy  cluster  ensembles,  and  (5) between  two  different  object  data
sets  with  the same  cardinal  number  and  the  same  partition  method.  Finally,  numerical  comparisons
and  experimental  results  are  used  to  demonstrate  the key  properties,  rationality,  and  practicality  of the
proposed  method.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Cluster analysis is important in data science. Clustering is a
method for finding clusters in a data set characterized by the great-
est similarity within the same cluster and the greatest dissimilarity
between different clusters. Clustering algorithms are useful tools
for cluster analysis [22,24,36]. There are various clustering algo-
rithms that have been proposed in the literature, but there is less a
single one being able to work well for different data sets. Combin-
ing those partitions from different clustering algorithms by using
cluster ensemble becomes a useful clustering framework. This tech-
nique is generally called cluster ensemble. Cluster ensemble has
been widely used in many application areas, such as machine learn-
ing [6,11,15], bioinformatics [10,20,26], image segmentation [47],
data mining [32,35], pattern recognition [12,13].

Strehl and Ghosh [31] first proposed cluster ensemble with three
effective methods for combining multiple partitions on collected
data sets to obtain high-quality combiners (ensembles). One of
these methods involves using the relation matrix of all crisp parti-
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tions for defining the representative matrix of the ensemble results.
Monti et al. [26] called this type of representative matrix a consen-
sus matrix. This method is both rational and simple. Subsequently,
there are many cluster ensemble methods proposed in the litera-
ture [3,4,16,34,37]. In general, one of the most popular approaches
for combining multiple partitions among cluster ensemble tech-
niques is to construct a consensus matrix. In this sense, evaluating
the consistency between consensus matrices in cluster ensembles
is important. However, there is less evaluation measure consid-
ered in the literature. In this paper we make an effort to advance
evaluation measures for cluster ensembles.

In general, Jaccard index (JI) [21], Rand index (RI) [29] and
adjusted Rand index (ARI)[18] are the most known indices for mea-
suring the similarity between crisp partitions, and has been widely
used in various areas [9,23,33,44]. However, these indices can be
only used for comparing similarity measures between crisp par-
titions, especially for the reference partitions and these partitions
produced by the k-means clustering. In fact, there is less evalua-
tion measure between consensus matrices from cluster ensembles.
According to our best knowledge, only the paper of Zhang et al. [48]
considered the comparisons between cluster ensembles based on
their respective consensus matrices.
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Zhang et al. [48] considered a generalized adjusted Rand index
(ARI) for cluster ensembles by using a consensus matrix to compute
theARIvalues for the following two cases: (i) a cluster ensemble and
a crisp partition, and (ii) two cluster ensembles. However, their
method [48] cannot treat the cases in fuzzy partitions and fuzzy
cluster ensembles. We  know that fuzzy clustering algorithms had
been widely studied and applied in various areas (see [5,27,38–41])
so that evaluation measures for fuzzy partitions and fuzzy cluster
ensembles are important. Therefore, extending evaluation measure
from partitions and cluster ensembles to fuzzy partitions and fuzzy
cluster ensembles is also one of our main purposes in this paper,
and it is supposed to be important and also the first work in the lit-
erature. We  follow our recent work in fuzzy generalized Rand index
(Yang and Yeh [42]), and then propose evaluation measures for
cluster ensembles based on the proposed fuzzy generalized Rand
index to broaden the evaluation scope to fuzzy situations such as:
between a fuzzy cluster ensemble and a crisp partition, between
a fuzzy cluster ensemble and a cluster ensemble, between a fuzzy
cluster ensemble and a fuzzy partition, between two fuzzy cluster
ensembles, and so forth.

The remainder of the paper is organized as follows. In Section
2, we first review Rand index, other related indexes, and cluster
ensemble. We  then review the method proposed by Zhang et al.
[48] where we also give some descriptions about the shortcom-
ing of Zhang’s method. We  also review some existing extensions
for Rand index. In Section 3, we first present the fuzzy generalized
Rand index. We  then construct the evaluation measures for cluster
ensembles based on the proposed fuzzy generalized Rand index.
In Section 4, numerical comparisons and experimental results are
used to clarify the rationality and practicality of the proposed
method. Finally, conclusions are stated in Section 5.

2. Rand index, other related indexes and cluster ensemble

Assume that there are two crisp partitions P(r), r = 1, 2 in the

object data set O = {o1, o2, · · ·,  on} withP(r) =
{
S(r)

1 , S(r)
2 , · · ·,  S(r)

kr

}
where

kr∪
h=1
S(r)
h

= OandS(r)
h

∩ S(r)
h′ = ϕ for all h /= h′, and kr denotes the

number of clusters of the partition P(r). Let a indicate the number
of the pairs of oi and oj belonging to the same cluster in P(1) and
P(2). Let b indicate the number of the pairs of oi and oj belong-
ing to the same cluster in P(1) and to different clusters inP(2). Let c
indicate the number of the pairs of oi and oj belonging to different
clusters in P(1) and to the same cluster in P(2). Let d indicate the
number of the pairs of oi and oj belonging to different clusters in
P(1) and P(2). Let nuv represent the number of objects that belong
to S(1)

u in the partition P(1) and S(2)
v belong to in the partition P(2).
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. Then, the

Rand index (RI)[29] between the crisp partitions P(1) and P(2) can
be defined as follows:
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Table 1
The contingency table N.
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Assume that the crisp partition matrix M(r)
C =

[
m(r)
hi

]
kr×n

of P(r), r = 1, 2is defined as m(r)
hi

=
{

1 ifoi ∈ S(r)
h

0 ifoi /∈ S(r)
h

. Let N =

(M(1)
C )(M(2)

C )
T

, where (A)T indicates the transpose of the matrix A.
The notation #(S)denotes the number of elements in the set S. Then
N = [nuv]k1×k2

, where nuv=#(S(1)
u ∩ S(2)

v ). Assume that N, where N is
called as the k1 × k2 contingency table as shown in Table 1, is con-
structed from the generalized hypergeometric distribution and the
maximum of RI equals to 1. Then the adjusted Rand index(ARI)[18]
between the crisp partitions P(1) and P(2) is defined as
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where E(RI) is the expected value of RI and max(RI) is the maximum
of RI. Let

l0 =
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u=1
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v=1

(
nuv

2
), l1 =

k1∑
u=1

(
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.  Then

ARI(P(1), P(2)) = l0 − l3
1
2 (l1 + l2)-l3
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a − 2(b+a)(c+a)
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1
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Next, we  review a consensus matrix. Assume that a crisp parti-
tion of the object data set O = {o1, o2, · · ·,  on} is P =

{
S1, S2, · · ·,  Sk

}
,

where
k∪
h=1
S
h

= OandS
h

∩ S
h′ = ϕ for all h /= h′. Then the relation

matrix R =
[
rij

]
n×nof O for P is defined as follows:

rij =
{

1 if oi and oj belong to the same cluster in P

0 otherwise
.

Let the co-association matrix A for P be A = R − I =[
aij

]
n×n,where I is an n × n identity matrix. Because of vari-

ous consideration, we  assume that the same object data set O has
the q′ crisp partitions (1)P,(2)P, · · ·, and (q′)P. We  know that a cluster
ensemble is used to combine these q′ crisp partitions (1)P,(2)P, · · ·,
and (q′)P into a useful clustering framework. Let the co-association
matrix for (w)P be defined as (w)A =

[
(w)aij

]
n×nwhere w = 1, · · ·,  q′.

A consensus matrix of cluster ensemble can be constructed as
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