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a  b  s  t  r  a  c  t

Symbolic  circuit  analysis  inherits  the  exponential  growth  of  transfer  function  complexity  with the  circuit
size.  Therefore,  symbolic  simplification  is an  NP-hard  problem.  Although  many  simplification  techniques
have  been  presented,  the  simplified  transfer  functions  are  not  written  in a  factorized  form,  and  conse-
quently,  it is difficult  to assess  the  contribution  of poles  and zeros  on  the circuit  behavior.  In this  paper,
a  swarm  intelligence  based  methodology  is presented  for the  simplified  factorized  symbolic  analysis  of
analog  circuits.  In this  method,  an extension  of  the  root  splitting  technique  is utilized  to  rewrite  the
expanded  transfer  function  of  the circuit  into  a factorized  form  comprising  DC-gain,  poles,  and  zeros.
Then,  the derived  factorized  transfer  function  is simplified  using  a  hybrid  Global  and  Local  search  algo-
rithm based  on  Artificial  Bee  Colony  and Simulated  Annealing  (named  GLABCSA).  The  objective  function
is  defined  to  minimize  the complexity  of the  symbolic  factorized  transfer  function  while  minimizing  the
DC-gain  error  and pole/zero  displacements.  The  presented  approach  has  been  successfully  developed  in
MATLAB.  The  program  can derive  the  simplified  factorized  symbolic  transfer  function  automatically  from
the input  text  netlist  of the circuit.  Symbolic  and  numerical  results  over  two  analog  amplifiers  are given
to  illustrate  the  efficiency  of the  presented  methodology.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Recently, multi-stage cascade amplifiers have become increas-
ingly exploited, as they provide high gain and large output swing
with low overdrive voltages [1–6]. Unfortunately, as gain stages
are cascaded, bandwidth is progressively reduced, because each
additional stage inevitably have own poles and zeroes, and more
importantly, requires additional compensation capacitors to avoid
compromising stability. Therefore, a frequency compensation pro-
cedure should be designed enabling high gain and wide bandwidth
with adequate stability margin. To achieve this purpose, sym-
bolic pole/zero analysis techniques can be employed to assist the
designer to make straight decisions during the frequency compen-
sation procedure [7,8].

Circuit modeling is of major importance in the symbolic analysis.
Different ways are used for the modeling of different circuits. For
instance, active devices can be modeled with controlled sources
or pathological elements (e.g., nullor equivalents) [9,10]. More-
over, semiconductor devices (e.g., BJT and MOSFETs) are substituted
by their small-signal models [11]. Non-ideal effects of transistors
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(e.g., parasitic port resistances and parasitic capacitors) can be
considered in the small-signal model according to the application
specifications [12].

The main problem in the practical use of symbolic tools is
the difficulties to handle large symbolic formula. Although many
approximation techniques have been proposed in the literature,
the simplified transfer function is not written in a factorized form,
and consequently, it is difficult to assess the contribution of poles
and zeros. The existing pole/zero extraction techniques exhibit
some drawbacks which limit their usage for practical analog cir-
cuits: First, pole/zero displacements are not effectively taken into
account during the pole/zero extraction process. Second, in the root
splitting method, the condition for which the expanded transfer
function can be factorized, is based on the relative magnitudes of
the polynomials, and the pole/zero errors are not under control.
Third, the resultant pole/zero expressions are expected to be not so
compact as it could be, because no simplification-after-generation
is performed. Fourth, pole/zero displacements are not under con-
sideration, and consequently, significant pole/zero errors may  be
generated in the simplified expressions.

In this paper, a combined swarm intelligence algorithm based
on artificial bee colony (ABC) and simulated annealing (SA) is pre-
sented for simplified factorization of symbolic transfer functions.
The main contributions in this paper can be summarized as follows:
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A simplified symbolic factorization methodology is presented
for analog amplifiers.

• To the best of our knowledge, this is the first algorithm specifi-
cally designed for simplifying the symbolic pole/zero factorized
transfer functions.

• The traditional root splitting technique is extended to efficiently
factorize the expanded transfer function.

• The factorization condition of the root splitting method is mod-
ified, in which, the pole/zero errors due to the factorization are
taken into account.

• A hybrid Global and Local search algorithm based on ABC and SA
(named GLABCSA) is introduced for the simplification of factor-
ized transfer function. The motivation is to gain the advantages of
ABC and SA, i.e., good global exploration mechanism of ABC and
good local search ability of SA.

• The proposed method guarantees that the maximum pole/zero
displacements in both factorization and simplification proce-
dures don’t exceed from user-specified thresholds.

The rest of the paper is organized as follows: In Section 2,
the existing pole/zero extraction and simplification techniques are
discussed. Section 3 provides an overview of the proposed method-
ology. In Section 4, the factorization method via the extended root
splitting technique is presented. Section 5 introduces the GLABCSA
simplification algorithm. In Section 6, the developed approach is
applied to extract the simplified factorized transfer function of two
analog amplifiers. Finally, conclusion remarks can be seen in Sec-
tion 7.

2. Related works

Generally, symbolic analysis methods can be classified accord-
ing to the basic mechanism used in the analysis engine, into
graph-based and matrix-based approaches [13]. Up-to-date sym-
bolic programs work, with only minor exceptions, on the basis of
matrix-based nodal analysis (NA) and its extensions, e.g., modified
NA (MNA) [14] and reduced MNA  (RMNA) [15]. These techniques
can also be extended to VLSI networks [16,17]. Comprehensive
reviews on symbolic analysis techniques can be seen in [13,18].

2.1. Symbolic simplification techniques

The main problem in the practical use of symbolic tools is
the difficulties to handle large formula in terms of computa-
tional complexity, memory, and CPU time [19]. Experiments show
that a few terms contain the majority of relevant information
of the circuit behavior [20,21]. According to the step in which
simplification is performed, three types of techniques can be dis-
tinguished: simplification-after-generation (SAG), simplification-
during-generation (SDG), and simplification-before-generation
(SBG) [22]. The SAGs are applied once the symbolic analysis has
been performed and the exact transfer function has been generated
[23].

2.1.1. Classical approaches
Let HE represent the small-signal transfer function of the circuit

in the expanded form, which has been generated either by matrix-
based or graph-based analysis methods. It can be expressed as

HE(s) = N(s)
D(s)

= f ′0 + f ′1 s + f ′2 s2 + . . . + f ′n′sn
′

f0 + f1 s + f2 s2 + . . . + fn sn
, (1)

where numerator N and denominator D are functions of complex
frequency s and circuit parameters x. Each polynomial f ′j or fi is a
sum-of-products of the set of symbolic parameters x, and can be

expressed as hk = hk1 + hk2 + . . . + hkT, where hkl is the l-th symbolic
term of the k-th polynomial of the transfer function, hk, which has
a total of T terms.

There are four classical SAG criteria, which were implemented
in almost all symbolic tools. In these criteria, the different poly-
nomials are simplified separately. In the first criterion [24], the
term hkl can be discarded from the polynomial hk, if |hkl (x) | ≤
ε × max (|hk1 (x) |, |hk2 (x) |, . . .,  |hkT (x) |), where ε (0 < ε < 1) is the
maximum allowable error for each polynomial. The drawback is
that accumulated error is not under control. Three criteria were
introduced to overcome this drawback. In the second criterion [25],
the condition on P candidate terms from polynomial hk, for which

they can be eliminated, is|
∑P

l=1
hkl (x) | < ε × |

∑T

l=1
hkl (x) |. The

criteria 3 and 4 [12] can be formulated as
∑P

l=1
|hkl (x) | < ε ×

|
∑T

l=1
hkl (x) | and

∑P

l=1
|hkl (x) | < ε ×

∑T

l=1
|hkl (x) |, respectively.

Although the four classical criteria are simple and easy to imple-
ment, they simplify different polynomials separately. If the same
error εM occurs for all polynomials, there is no magnitude/phase
error. However, because of the discrete nature of simplification,
the actual errors of polynomials are different. Different solutions
were reported to overcome this problem. In [25], an adaptive ε, in
which, the term-pruning is done by increasing the value of ε step
by step, and monitoring the pole/zero displacements at the each
step. The simplification can be stopped when such displacements
are beyond a user-specified margin.

2.1.2. Metaheuristic based approaches
Symbolic simplification is an NP-hard (non-deterministic

polynomial-time hard) problem [23]. The size of search space can

be calculated as
∑L

l=1

(
L
l

)
=

(
L
1

)
+

(
L
2

)
+ . . . +

(
L
L

)
= 2L −

1 ≈ 2L , where L and l are the total number of terms and the number
of selected terms, respectively. Generally, in metaheuristic-based
simplification techniques, a feasible solution is represented as a
binary string. The k-th variable is “1”, if the corresponding element
or term is presented in the solution, and it is “0”, for the otherwise.

A technique based on genetic algorithm (GA) was presented in
[26] to simplify the equivalent small-signal circuits. The objective
is to minimize the magnitude error within a frequency interval. The
main drawback is that the phase of the transfer function is not under
consideration. Moreover, the results are expected to be complex, as
no SAG is performed to clean-up the final symbolic expression.

An ant colony optimization (ACO) has been proposed [23], in
which, the simplification problem space is represented as a rout-
ing graph with L nodes, wherein L is the number of all symbolic
terms. To construct a feasible solution, each ant selects some terms
according to the probability rule of ACO. The drawback is that only
gain and phase margin errors are considered to evaluate the sim-
plified expressions represented by ants, where the circuit may  does
not have a certain gain or phase margin.

Deviation in pole/zero locations is not efficiently taken into
account in the above methods. Two  GA-based technique was  pre-
sented in [27,28] to overcome this drawback. The objective is to
minimize the generated error in terms of some characteristics, e.g.,
magnitude/phase error and pole/zero displacement. However, the
worst case error in pole/zero displacements is not considered in
[27,28]. This problem has been addressed and solved in [21,29,30].
Although the metaheuristic techniques outperform the conven-
tional classical criteria in term of accuracy, these methods are only
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