
Please cite this article in press as: M.  Layouni, et al., Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-
adapted wavelets and machine learning, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.10.040

ARTICLE IN PRESSG Model
ASOC 3891 1–15

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Detection  and  sizing  of  metal-loss  defects  in  oil  and  gas  pipelines
using  pattern-adapted  wavelets  and  machine  learning

Mohamed  Layounia,b,∗Q1 , Mohamed  Salah  Hamdia,  Sofiène  Taharb

a Ahmed Bin Mohammed Military College, P.O. Box 22713, Doha, Qatar
b Concordia University, Electrical & Computer Engineering Department, 1455 de Maisonneuve Blvd. W,  Montreal, Quebec, Canada H3G 1M8

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 7 May  2014
Received in revised form 26 October 2016
Accepted 27 October 2016
Available online xxx

Keywords:
Oil and gas pipelines
Safety assessment
Pattern-adapted wavelets
Pattern recognition
Neural networks
Machine learning
Defect sizing
Magnetic flux leakage

a  b  s  t  r  a  c  t

Signals  collected  from  the magnetic  scans  of  metal-loss  defects  have  distinct  patterns.  Experienced
pipeline  engineers  are  able  to  recognize  those  patterns  in  magnetic  flux  leakage  (MFL)  scans  of  pipelines,
and  use  them  to characterize  defect  types  (e.g.,  corrosion,  cracks,  dents,  etc.)  and  estimate  their  lengths
and depths.  This  task,  however,  can be highly  cumbersome  to a  human  operator,  because  of  the large
amount  of  data  to  be analyzed.  This  paper  proposes  a solution  to  automate  the  analysis  of  MFL  signals.
The  proposed  solution  uses  pattern-adapted  wavelets  to detect  and  estimate  the length  of metal-loss
defects.  Once  the  parts  of  MFL  signals  corresponding  to metal-loss  defects  are  isolated,  artificial  neural
networks  are  used  to predict  their  depth.  The  proposed  technique  is  computationally  efficient,  achieves
high  levels  of  accuracy,  and  works  for a wide  range  of  defect  shapes.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Oil and gas pipelines are an important component of the energyQ4
sector nowadays. In the US, 70% of all petroleum transported in
2009 was carried by pipeline [4]. In Canada, 97% of all natural gas
and crude oil production is currently being transported by pipeline
[14]. However, despite being considered as one of the safest and
cheapest ways to transport oil and gas [13,14], pipelines are still
prone to a variety of metal-loss defects such as corrosion, cracks,
and dents. These defects are mainly due to factors, such as extreme
temperature and pressure inside the pipeline, exposure to highly
corrosive chemicals, water, etc. The repercussions of not detecting
and repairing such defects on time can be very serious: huge finan-
cial losses, damage to the environment, health and life hazards,
etc. Given the size of an average pipeline, and the amount of data
generated from magnetic scans, relying on human operators to
sift through the data and find defects is a highly challenging and
error-prone task.
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mshamdi@abmmc.edu.qa (M.S. Hamdi), tahar@ece.concordia.ca (S. Tahar).

This paper describes a solution to automate the process of
inspecting MFL  data [16–18] generated through the scanning of oil
and gas pipelines. The proposed solution uses a technique based
on pattern-adapted wavelets [15,36] to detect, locate, and estimate
the length of metal loss defects along the pipeline. Once a defect is
located, a number of features are extracted from the corresponding
MFL  signal. Those features are then fed into an artificial neural net-
work which returns an estimate of the defect depth. The obtained
depth and length are then used to assign a severity rating to the
detected defect, and decide whether or not urgent repairs are due.
The severity rating is assigned using industry standards such as
ASME.BG31 [3], which provides a formula to evaluate a defect’s
severity given its dimensions, the operating pressure inside the
pipeline, and other properties of the steel used to build the pipeline.

Related work. The development of techniques to assess the
safety of oil and gas pipelines has attracted the attention of many
researchers over the last several years [17,18,46,41,51,20,39,50].
Results on this topic are very diverse in terms of what they achieve,
the specific problems they address, and the approaches they use.
Fig. 1 provides a high-level summary of the research landscape
in this area. Following the notation in Fig. 1, we  can divide the
literature on this topic into three main groups:

Group I. Numerical techniques to determine defect sizes.
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Fig. 1. Summary of related work and comparison to this paper.

Group II. Non-numerical techniques to detect and locate defects
(sizing problem not considered).

Group III. Non-numerical techniques to detect, locate, and deter-
mine the opening length of defects. Some of the work in
this category does also provide ways to classify defects
and other pipeline features into different types (e.g., holes,
valves, junctions, etc.).

It is worth noting at this point that work listed under Groups II
and III includes cases where the application domain is not related to
oil and gas pipelines. Some of the techniques, for example, relate to
the detection and location of defects in underground power cables.
In some cases also, the signals being analyzed are not MFL  sig-
nals (e.g., electrical, acoustic, and pressure wave signals). None of
the non-numerical methods found in the literature considered the
problem of determining defect depths.

In the following, we summarize each of the group of techniques
listed above, and show the similarities and differences with the
work in this paper.

Group I: Numerical techniques to determine defect sizes. The
work in [17,18,46] considered numerical methods, not based on
wavelets, to address the problem of defect sizing from MFL signals.
These methods however only apply to defect shapes for which ana-
lytical models are known. The approach proposed in [17,18,46] is
to express the relationship between MFL  signals and defect geome-
tries through an equation of the form:

BMFL = F(D) (1)

where BMFL denotes the MFL  signals, D is the defect geometry, and
F(·) is the analytical model describing the behavior of the MFL  sig-
nals in relation to the defect geometry. Determining the size of a
defect, then, reduces to inverting Equation (1) and finding D given
BMFL and F(·). This approach is straightforward, but has a number
of limitations: (i) Eq. (1) may  have several solutions, which could
lead to several plausible defect geometries; (ii) solving Eq. (1) has

a high computational cost – at least cubic in the size of the MFL
signals matrix BMFL [29]; and (iii) the analytical model F(·) itself
is not always available. In fact, apart from a limited number of
simple defect shapes (e.g., cylindrical, spherical, spheroidal, and
cuboidal [18,46,29]), analytical models for general arbitrary defect
shapes are still hard to derive [18,46]. This is due to the fact that
deriving analytical models requires solving Maxwell’s equations of
magnetism [1], which is not easy for defects of general arbitrary
shapes.

The authors in [17,18,46] demonstrate their approach on a num-
ber of simple defect shapes, and solve the sizing problem using
techniques such as the finite element method (FEM) [48], linear
algebra, and machine learning. However, as explained above, it is
hard to apply this approach to defects of arbitrary shapes.

More recently, the authors in [42] have used numerical methods
to study the relationship between MFL  signals and defect geome-
tries (length and depth). They conclude their paper by confirming
the non-linear nature of the relationship between MFL  signals and
defect geometries. They do also point out the difficulty of using
numerical methods for determining defect depths from MFL  sig-
nals, since several defect geometries can lead to the same MFL  signal
characteristics (e.g., maximum peak amplitude).

Building on the observations of [42], the work in [44] uses
numerical methods to estimate the worst-case defect depth corre-
sponding to a given MFL  signal. The proposed method is applied to
an MFL  model generated from a non-linear FEM approximation. The
authors conclude by pointing out that the accuracy of the worst-
case defect depth depends on the quality of the MFL  model being
used, and that for defects deeper than 70% of the wall’s thickness,
the solutions found by their method may  not be correct.

Finally, the work in [27] describes a model to estimate defect
depths as a quadratic function of the MFL  peak values. The param-
eters of the model, however, are obtained by computing an FEM
approximation of the MFL  field for a given defect shape. The exper-
imental results reported by the authors show that their method
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