
Please cite this article in press as: Z. Xiao, et al., Learning non-cooperative game for load balancing under self-interested distributed
environment, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.10.028

ARTICLE IN PRESSG Model
ASOC-3878; No. of Pages 11

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Learning non-cooperative game for load balancing under
self-interested distributed environment

Zheng Xiaoa,∗, Zhao Tongb, Kenli Lia, Keqin Lia,c

a College of Information Science and Engineering, Hunan University, Changsha, People’s Republic of China
b College of Mathematics and Computer Science, Hunan Normal University, Changsha, People’s Republic of China
c Department of Computer Science, State University of New York, NY 12561, USA

a r t i c l e i n f o

Article history:
Received 4 May 2014
Received in revised form 22 July 2016
Accepted 21 October 2016
Available online xxx

Keywords:
Distributed computing
Job scheduling
Load balancing
Non-cooperative game
Reinforcement learning

a b s t r a c t

Resources in large-scale distributed systems are distributed among several autonomous domains. These
domains collaborate to produce significantly higher processing capacity through load balancing. How-
ever, resources in the same domain tend to be cooperative, whereas those in different domains are
self-interested. Fairness is the key to collaboration under a self-interested environment. Accordingly, a
fairness-aware load balancing algorithm is proposed. The load balancing problem is defined as a game.
The Nash equilibrium solution for this problem minimizes the expected response time, while maintain-
ing fairness. Furthermore, reinforcement learning is used to search for the Nash equilibrium. Compared
with static approaches, this algorithm does not require a prior knowledge of job arrival and execution,
and can adapt dynamically to these processes. The synthesized tests indicate that our algorithm is close
to the optimal scheme in terms of overall expected response time under different system utilization,
heterogeneity, and system size; it also ensures fairness similar to the proportional scheme. Trace sim-
ulation is conducted using the job workload log of the Scalable POWERpallel2 system in the San Diego
Supercomputer Center. Our algorithm increases the expected response time by a maximum of 14%. But
it improves fairness by 12–27% in contrast to Opportunistic Load Balancing, Minimum Execution Time,
Minimum Completion Time, Switching Algorithm, and k-Percent Best.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Grid and cloud computing [1] are two widely deployed large-
scale distributed systems. Computing resources that are connected
through the Internet can spread worldwide. As far as the number
and types of jobs are concerned, distributed systems can provide
unimaginable computation capacity by gathering resources as
many as possible, and thus undertake a large amount of concurrent
requests. Load balancing is the key to exploiting the huge potential
of distributed systems.

Different kinds of interactions between resources are involved
because multiple autonomous domains exist in large-scale dis-
tributed systems. Resources in the same domain generally tend to
be cooperative. They share the same goals. Some previous algo-
rithms listed in Section 2 such as Opportunistic Load Balancing
(OLB), Minimum Execution Time (MET), Minimum Completion

∗ Corresponding author.
E-mail addresses: zxiao@hnu.edu.cn (Z. Xiao), tongzhao1985@yahoo.com.cn

(Z. Tong), lkl510@263.net (K. Li), lik@newpaltz.edu (K. Li).

Time (MCT), Switching Algorithm (SA), and k-Percent Best (kPB) can
be applied for this cooperative interaction [2–6]. To the contrary,
interactions between different domains are usually self-interested.
Resources have their own interests or goals. For example, they need
to minimize the response time of services they provide, so that
sometimes they have to turn down ones that are not their own
users. Rao and Kwork [7,8] present some selfish scenarios in grid
and model them using game theory.

Considering the emergence of cooperative and self-interested
interactions, resources in distributed systems can be classified into
three groups as per their roles. The first class, which is dedicated for
computation, is called processing elements (PEs) in this study. The
second class is homo-schedulers, which is the bridge to achieve full
cooperation among PEs. Through cooperative interaction, homo-
schedulers unite all PEs that are affiliated to them, to finish the
common goal. The last class, called heter-schedulers, is indepen-
dent and self-interested. Their own benefits have a priority. They
are often located in different domains. The interaction among dif-
ferent classes should follow different protocols, i.e., different load
balancing schemes.

In this study, we focused on the interaction among
heter-schedulers. We propose a load balancing scheme for

http://dx.doi.org/10.1016/j.asoc.2016.10.028
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.10.028
dx.doi.org/10.1016/j.asoc.2016.10.028
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:zxiao@hnu.edu.cn
mailto:tongzhao1985@yahoo.com.cn
mailto:lkl510@263.net
mailto:lik@newpaltz.edu
dx.doi.org/10.1016/j.asoc.2016.10.028

Please cite this article in press as: Z. Xiao, et al., Learning non-cooperative game for load balancing under self-interested distributed
environment, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.10.028

ARTICLE IN PRESSG Model
ASOC-3878; No. of Pages 11

2 Z. Xiao et al. / Applied Soft Computing xxx (2016) xxx–xxx

large-scale distributed systems, achieving collaboration under a
self-interested environment.

Heter-schedulers have their own objectives. They are only
willing to accept some of the jobs that will not negatively influ-
ence their performance. If the load assignment is unfair, some
resources have to contribute significantly more than others. Self-
interested resources undoubtedly have no incentive to make such
sacrifice. Therefore, fairness is the key to collaboration among
heter-schedulers.

The policy of one heter-scheduler depends on the policies of
others. Thus, this problem can be modeled as a non-cooperative
game. The Nash equilibrium solution for this problem minimizes
the expected response time, while maintaining fairness. Similar to
a prisoners’ dilemma in game theory, each participant attempts
to minimize their own response time until no one can profit
from strategy alteration. Finally all the participants have an equal
response time, which leads to fairness.

To find the Nash equilibrium solution, which ensures fairness,
some static scheduling algorithms are proposed [9–11]. They use
queueing theory to estimate the utilities of each allocation. Refs.
[9,11] are based on M/M/1 model while M/G/1 in [10]. In these
models, job arrival and service rates are assumed to be a priori
knowledge. Though, job arrival and execution processes are unpre-
dictable in a distributed system. Estimating the parameters is a
non-trivial task, and the exactness of the model remains suspi-
cious. In contrast, reinforcement learning, an online unsupervised
learning method, is used in our algorithm. It does not require a
priori knowledge of job arrival and execution, and adapt dynami-
cally to these processes based on online samples, which is effective
and practical. When all the heter-schedulers independently use this
algorithm, Nash equilibrium is achieved.

To validate the proposed algorithm, its performance is stud-
ied under different system utilizations, heterogeneities, and sizes.
The experiment results indicate that our algorithm outperforms
the proportional scheme, and is close to the optimal scheme in
terms of overall expected response time. However, our algorithm
ensures fairness to all schedulers, which is important under a self-
interested environment. Trace simulation is also conducted using
a job workload log of the Scalable POWERpallel2 system (SP2) in
San Diego Supercomputer Center (SDSC). Our algorithm increases
the expected response time by a maximum of 14%, but improves
fairness by 12–27% in contrast to Opportunistic Load Balancing
(OLB), Minimum Execution Time (MET), Minimum Completion
Time (MCT), Switching Algorithm (SA), and k-Percent Best (kPB).

The main contributions of this study are as follows.

• It provides a unified framework, which characterizes resources
into three roles and uses protocols to describe various interac-
tions.
• It enhances fairness among self-interested schedulers using Nash

equilibrium of a non-cooperative game.
• It proposes a fairness aware algorithm based on reinforcement

learning, dynamically adapting to job arrival and execution with-
out any priori knowledge.
• It validates the capability of our algorithm to provide fairness

and minimize the expected response time under various system
utilizations, heterogeneities, and sizes through synthesized tests.
Trace simulation shows improved fairness by approximately 20%
traded by at most 14% increase in response time, compared with
five typical load balancing algorithms.

The remainder of this paper is organized as follows. Section 2
provides the related work on load balancing. In Section 3, a unified
framework is presented to describe large-scale distributed systems.
Then, Section 4 focuses on the load balancing problem under a self-
interested environment, and defines a non-cooperative game. In

Section 5, a fairness aware algorithm based on reinforcement learn-
ing is proposed. The performance of this algorithm is evaluated in
Sections 6 and 7. Finally, Section 8 concludes this paper.

2. Related work

2.1. Static versus dynamic

Load balancing has been studied for decades. During the early
stages, Directed Acyclic Graph (DAG) scheduling [12,13] is been
investigated for parallel machines. Resources are dedicated in these
parallel systems. Task dependency and execution time on resources
are possible to acquire. A scheduling scheme is often determined
at compile time. Thus, these algorithms are static. Static scheduling
requires a priori knowledge of arrival and execution.

However, job arrival and execution are hard to predict because
uncertainties exist in distributed systems [14]. For example, the
unstable communication consumption of low-speed networks and
fluctuating computational capacity of resources cause uncertain
execution time of jobs. Predictions based on historical records [15]
or workload modeling [16] are used to estimate the execution time
of jobs. But unsatisfactory precision and extra complexity are the
drawbacks of these methods. Furthermore, jobs arrival patterns
vary from different applications. Size and Computation Commu-
nication Ratio (CCR) can hardly be predicted. Therefore, dynamic
algorithms are popular for load balancing in distributed systems. A
scheduling scheme is determined at running time.

Batch mode, which makes scheduling scheme for a fixed num-
ber of jobs, is one category of dynamic scheduling. Min–Min (map
jobs with least minimum completion time first), Max–Min (map
jobs with the maximal minimum completion time first), and Suf-
frage (map jobs which suffer the most if not allocated right now)
[2,17,18] are three typical batch heuristics. Batch functions like a
cache to mitigate the influence of uncertain arrival pattern. These
algorithms have to wait until all jobs in the batch have arrived, so
they lack real-time capability. By contrast, online mode emerges
and jobs are scheduled immediately after they arrive. Five such
algorithms are available, namely, OLB, MET, MCT, SA, kPB [3,4,6].
OLB assigns jobs to the earliest idle resource without any consid-
eration about the execution time of the job on the resource. MET
assigns jobs to a resource that results in the least execution time
for that job, regardless of that machines availability. MCT assigns
jobs to the resource yielding the earliest completion time. SA first
use the MCT until a threshold of balance is obtained followed by
MET which creates the load imbalance by assigning jobs on faster
resources. kPB tries to combine the best features of MCT and MET
simultaneously instead of cyclic manner of SA. In this method, MCT
are applied to only k percentage of best resources. However, These
algorithms disregard the influence from subsequent jobs.

Dynamic scheduling is shortsighted and does not consider the
subsequent jobs. To achieve a global optimization, scholars pro-
posed new dynamic algorithms to adapt to job arrival and execution
processes. The authors of [19] presented a resource planner system
that reserves resources for subsequent jobs. The authors of [20] pro-
posed a dynamic and self-adaptive task scheduling scheme based
upon application-level and system-level performance prediction.
An on-line system for predicting batch-queue delay was proposed
by Nurmi et al. [21]. Rao and Huh [22] presented a probabilistic and
adaptive job scheduling algorithm using system generated predic-
tions for grid systems.

The algorithm proposed in this paper can be classified into
dynamic scheduling. Compared with OLB, MET, MCT, SA, and kPB,
it can effectively adapt to the job arrival and execution processes.
Different with the approaches in [19–22], it does not depend on
any workload prediction models.

dx.doi.org/10.1016/j.asoc.2016.10.028

Download English Version:

https://daneshyari.com/en/article/4963472

Download Persian Version:

https://daneshyari.com/article/4963472

Daneshyari.com

https://daneshyari.com/en/article/4963472
https://daneshyari.com/article/4963472
https://daneshyari.com

