Accepted Manuscript

Revised date:

Accepted date:

Title: A Local Search based Approach for Solving the Travelling Thief Problem

5-5-2016

29-9-2016

Author: Mohamed El Yafrani Belaïd Ahiod

PII: DOI: Reference:	S1568-4946(16)30506-3 http://dx.doi.org/doi:10.1016/j.asoc.2016.09.047 ASOC 3846
To appear in:	Applied Soft Computing
Received date:	4-4-2015

Please cite this article as: Mohamed El Yafrani, Belaïd Ahiod, A Local Search based Approach for Solving the Travelling Thief Problem, <*![CDATA[Applied Soft Computing Journal]]*> (2016), http://dx.doi.org/10.1016/j.asoc.2016.09.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Alge	orithm 1 JNB (first-fit version)	
1 $x \leftarrow initial \ tour$		▷ we always use a Lin-Kernighan tour
2 z	\leftarrow initial picking plan	
3 r	epeat	
4	Evaluate G, t , and p for (x, z)	
5	Update t^{map} , t^{acc} , and w^{acc}	
6	for $i \leftarrow 2 \dots n-1$ do	
7	$\overline{x} \leftarrow swap(x,i)$	
8	$\overline{t^{map}} \leftarrow tour \ mapper \ for \ (\overline{x}, z)$	
9	$\overline{t^{acc}} \leftarrow recover \ time \ accumulator \ for \ (\overline{x}, z)$	
10	$\overline{w^{acc}} \leftarrow recover \ weight \ accumulator \ for \ (\overline{x}, z)$	
11	for $k \leftarrow 1 \dots m$ do	
12	$\overline{z} \leftarrow bitflip(z,k)$	
13	if no space left then skip iteration end if	
14	calculate Δ_w and Δ_p	
15	$\overline{p} \leftarrow p + \Delta_p$	
16	$i_{BF} \leftarrow t_{A_k}^{map}$	\triangleright index of bit-flip
17	if $i_{BF} = 0$ then $\overline{t} \leftarrow 0$ else $\overline{t} \leftarrow \overline{t_{i_{BF}}^{acc}}$ end if	
18	for $r \leftarrow i_{BF} \dots n$ do	
19	$w_c \leftarrow \overline{w_r^{acc}} + \Delta_w$	
20	$\overline{t} \leftarrow \overline{t} + \frac{d_{\overline{x}_r, \overline{x}_r + 1modn}}{v_{max} - w_c * C}$	
21	end for	
22	$\overline{G} \leftarrow \overline{p} - R * \overline{t}$	
23	if $\overline{G} > G$ then break loop end if	\triangleright first fit
24	end for	
25	if $\overline{G} > G$ then break loop end if	⊳ first fit
26	end for	
27	if $\overline{G} > G$ then	
28	$x \leftarrow \overline{x}$	
29	$z \leftarrow \overline{z}$	

 $\begin{array}{ll} 29 & z \leftarrow z \\ 30 & \text{end if} \\ 31 & \text{until } \overline{G} \leq G \end{array}$

Download English Version:

https://daneshyari.com/en/article/4963502

Download Persian Version:

https://daneshyari.com/article/4963502

Daneshyari.com