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a  b  s  t  r  a  c  t

This  paper  presents  a stochastic  partially  optimized  cyclic  shift  crossover  operator  for  the  optimiza-
tion  of the  multi-objective  vehicle  routing  problem  with  time  windows  using  genetic  algorithms.  The
aim  of  the  paper  is to show  how  the  combination  of  simple  stochastic  rules  and  sequential  appendage
policies  addresses  a  common  limitation  of  the  traditional  genetic  algorithm  when  optimizing  complex
combinatorial  problems.  The  limitation,  in question,  is the  inability  of the  traditional  genetic  algorithm  to
perform  local  optimization.  A  series  of  tests  based  on  the Solomon  benchmark  instances  show  the  level
of  competitiveness  of the newly  introduced  crossover  operator.
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1. Introduction

The vehicle routing problem with time windows (VRPTW) [1]Q5
is a combinatorial optimization problem which deals with time-
constrained service provision. The problem consists of a set of
trucks which leave a centralized depot, and service a set of geo-
graphically dispersed customers. Each customer has a demand of
commodities which ought to be satisfied by the servicing truck
within predefined time-windows. The problem is also subject to
the restriction that each customer must be visited exactly once and
that the cumulative demands of the serviced customers must not
exceed the capacity of the servicing truck. The objective of the prob-
lem is to minimize the total travel cost (distance, time, number of
trucks, etc.).

As an extension of the capacitated vehicle routing problem
(CVRP), and a generalization of the travelling salesman problem
with time windows (TSPTW), the applications of VRPTW range
from modeling real-life logistical problems which involve time and
capacity restrictions [2] to schedule sequential jobs when there
exist dependencies between the jobs on each machine [3]. The
multi-objective VRPTW (MOVRPTW) arise from the fact that many
real life problems require the simultaneous optimization of two
or more objectives [4]. The problem is of particular interest among
researchers because of its classification as an NP-complete problem
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[5]. Thus, the problem is intractable; which forces researchers to
resort to specialized heuristics and meta-heuristics to solve practi-
cal size problem instances.

Early attempts to solve VRPTW instances rely on heuristics
based on deterministic methods. Such heuristics include the time-
oriented nearest neighbor heuristics and the insertion heuristics
presented in [1]. Aside from their inability to support multi-
objective optimization (MO), deterministic methods are inefficient
with large-scale problem instances. Multi-objective genetic algo-
rithms (MOGAs) [6,7] are prime candidates for solving MOVRPTWs
for two  main reasons. Firstly, their ability to maintain a population
of candidate solutions [7] makes them suitable to approximate the
pareto-optimal set of the multi-objective problems. Secondly, as
meta-heuristics, they are proven to provide near optimal solutions
to complex optimization problems in acceptable time. Neverthe-
less, genetic algorithms, and by extensions MOGAs, are liable to the
lack of accuracy and efficiency when optimizing complex problems
[8]. In order to surmount those weaknesses, the traditional GA oper-
ators are modified to incorporate local optimization techniques.
Among those operators is the crossover operator. The insertion
based-crossover operators such as the Best Cost Route Crossover
(BCRC) [2,7], or the construction algorithm presented in [9] have
been successfully used in MOGAs for the optimization of VRPTWs.
But, one must note that regardless of the quality of the solutions
found, those crossover operators employ exhaustive techniques to
find the best cost node positions.

The partially optimized cyclic-shift crossover (POCSX) incorpo-
rates the hill-climbing mechanism by sequentially appending the
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Nomenclature

Sets
C set of customer nodes
N set of all nodes
V set of vehicles

Variables
bik time at which the service begins at i
dij distance between nodes i and j
di demand of customer i
ei earliest allowable service time for customer i
i, j indices of nodes
K a very big number
k index of vehicle
li latest allowable service time for customer i
mi service completion time at customer i
q uniform capacity of all the vehicles
sik time needed for vehicle k to service customer i
tij travel time between nodes i and j
wik wait time of vehicle k at node i
xijk variable set to 1 if the vehicle k travelled from node

i to node j

Other symbols
˛ij cost of edge (i, j)
p av1 sequence of available customer nodes in parent 1
p u nas a boolean array which keeps track of nodes not yet

appended
p1, p2 parent chromosomes
p1[i] ith gene of parent 1

low-cost gene (nodes) of the two mating parents at each gene posi-
tion of the child chromosome. Though the crossover has low time
complexity (compared to the insertion based crossovers), its appli-
cation to VRPTW have yielded disappointing solutions in [10]. In
this paper, we introduce the stochastic POCSX (SPOCXS) which is
the improvement of the POCSX. The contributions in this paper
include:

• A new child construction algorithm based on the sequential
appendage of genes.
• A mathematical model which defines the viability of the potential

node to ensure that the resulting child encodes a feasible solution.
• A mathematical model for the appendage cost to ensure that the

resulting child is an improvement of the parent chromosomes.
• A stochastic appendage rule to overcome potential traps to local

minima.

In the following lines, we cover the literature review in Section 2.
Section 3 gives a formal definition of the problem, and Section 4
provides an in-deft description of our MOGA, including the newly
introduced SPOCSX. Section 5 describes the experimental set-up.
The results are discussed in Section 6. Finally, the conclusion is
given in Section 6.

2. Background

Over the years, many attempts have been made to efficiently
solve instances of the VRPTW. Early attempts to solve the problems
include problem solving strategies which account for a single objec-
tive (mainly minimizing the distance cost). Solomon’s early works
on time-oriented nearest neighbor heuristics and on the insertion-
based heuristics [1] are but a few examples of approaches used to

solve single objective VRPTW instances. The time-oriented near-
est neighbor heuristics sequentially constructs a solution based on
the lowest cost of neighboring nodes. The insertion-based heuris-
tics, on the other hand, rely on two cost functions to determine the
best insertion positions and the best node to be inserted among a
series of unrouted nodes. Solomon’s works have proven that the
insertion heuristics outperforms the appendage-based heuristics
in most cases. Solomon’s findings inspired Potvin and Rousseou
to further improve the insertion heuristics which resulted on the
conception of the parallel construction algorithm described in [11].
Although the insertion-based heuristics have proven effective in
finding optimal results, they rely on exhaustive search to identify
the best insertion positions.

Particle Swarm Optimization (PSO) is a population-based meta-
heuristic which arises from the simulation of the social behaviour of
swarms (flock of birds, fish schooling, etc.) [12]. PSO is an iterative
method which bears a lot of similarities with other evolutionary
algorithms (namely genetic algorithm). PSO maintains a popula-
tion of independent entities or particles which go through changes
to achieve a common goal: reaching the optimal or near optimal
point of a given objective function. Each particle is represented by
an n-dimensional position vector and an n-dimensional velocity
vector. In addition, each particle has the ability to remember its last
recorded best position deemed personal best. Moreover, the local
best position of selected neighbouring particles is also known to
the particle. The best position of all the local best is archived as the
global best. Over the course of the iterations, the particle’s position
vector and velocity vector are updated in such a way that the parti-
cle’s next position coincide with the best or near best positions with
the minimum possible fluctuations over the search space. Origi-
nally conceived for continuous optimization, PSO has seen its scope
broaden and expanded to various integer programming problems.
PSO has been successfully applied to solve small VRPTW instances
in [13,14]. It is noteworthy that PSO, as a population-based search
method, can be extended to support multi-objective optimization.
In [15], Coello and Lechuga laid down the foundations of approx-
imating the pareto-optimal front with PSO by keeping track of all
the non-dominated global best in an external archive. The method
has been applied to multi-objective VRPTW in [16]. However, the
investigations in [17] found that such approach can be detrimental
to the performance of PSO as the complexity to update the archive
of the global best can, at each iteration, rise up to O(KN2) with K
the number of objectives and N the number of particles. The past
few years have seen the multi-objective PSO (MOPSO) reach a high
level of maturity in the multi-objective optimization of integer pro-
grams. The work by Torabi et al. on multi-objective optimization of
unrelated parallel machines scheduling problem [18] is a worthy
example of the application of MPSO to a multi-objective integer
problem. One of the challenges to approach VRTPW (an integer
program) with MOPSO (a continuous method) is the representa-
tion of solutions which, in most cases, are left to the researcher’s
interpretation of the problem resulting in a wide variety of indirect
representations such as the n + 2 × m-dimensional representation
of the particle position in [13,14], the n-dimensional particle posi-
tion shown in [16], or the 2 × n-dimensional representation in [19].
Along with each representation, a decoding scheme is deployed
prior to the evaluation process.

Genetic algorithm (GA) [20] is a global optimization technique
which comprises of interrelated operations which include ini-
tialization, evaluation, selection, crossover (mating), and/or the
mutation, and truncation (or replacement strategy) [21]. The com-
bination of the evaluation, selection, crossover and/or mutation is
subject to an iterative process (evolution) until a stop condition
is met. Like PSO, GA maintains a population of potential solutions
in the process of finding the optimal or pseudo optimal solutions.
Unlike PSO, during the optimization process, GA’s search procedure
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