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a  b  s  t  r  a  c  t

Many  social  spreading  phenomena  can  be modeled  as  epidemic  spreading  models  over networks,  and  the
studies  of these  phenomena  are  important  to avoid  epidemic  outbreaks.  Epidemic  threshold  of  the  net-
work, which  fundamentally  depends  on the  network  structure  itself,  is  a critical  measure  to  judge whether
the epidemic  dies  out  or  results  in  an  epidemic  breakout.  In this  study,  epidemic  threshold  is  regarded  as
the  objective  function  to control  the spreading  process.  In addition,  an efficient  structure  optimization
strategy  based  on memetic  algorithm  is proposed  to  adjust  the  spreading  threshold  without  changing  the
degree  of  each  node.  Lowering  the threshold  can  promote  the  spreading  process  whereas  heightening  the
threshold  can  prevent  the  spreading  process.  In the  proposed  algorithm,  genetic  algorithm  is  adopted  as
the global  search  strategy  and  a modified  simulated  annealing  algorithm  combined  with  the  properties
of  networks  is  proposed  as  the  local  search  strategy.  Experiments  on  computer-generated  and  real-world
networks  demonstrate  that  the  proposed  algorithm  has  superior  performances  for  both  the threshold
minimization  and maximization  problems.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The investigations of epidemic spreading have a long tradition
[1,2]. In recent years, complex network has become an impor-
tant tool for the studies of epidemic spreading. Each node in
the network represents an individual, and each edge denotes a
route for spreading between two individuals. Various epidemic
spreading models have been proposed to reveal how epidemics,
rumors, viruses, and information spread over social and computer
networks [3–5]. In spreading models, we use  ̌ to denote the
probability of a node infecting its neighbors and ı to denote the
probability that the infected node can be cured. Among these
spreading models, the susceptible-infected-susceptible (SIS) [6,7]
and susceptible-infected-removed (SIR) [8,9] models have received
wide acceptance. Each individual in SIS model is either susceptible
(S) or infective (I). A susceptible individual will be infected by its
infective neighbors with a probability ˇ, and an infective individual
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can be cured to be susceptible again with a probability ı. SIR model
is a little different from SIS model. Once an infective individual
is cured, it is removed (R) and never gets further infection. The
models for epidemic spreading have been successfully employed
to express many social spreading phenomena, such as the spread
of email and computer viruses [3,10], the propagation of failure
in power grid [11], the epidemic dissemination in peer-to-peer
and ad hoc networks [12], and the diffusion of information in
the online networks [4,13]. A simple epidemic would result in a
massive outbreak in a complex network [14].

In recent years, there are many studies focusing on the pre-
vention of epidemics. The immunization strategy is a commonly
used method. Cohen et al. [15] proposed an immunization strat-
egy for scale-free networks to immunize some random individuals.
Kobayashi et al. [16] prevented the contagions in financial networks
by combining the immunization strategy with the possibility of
serious side effects. And Gong et al. [17] proposed a strategy to
prevent epidemic outbreaks by vaccinating the bridge nodes in
community networks. These immunization strategies are effec-
tive when there is vaccine and it works. Moreover, a few works
[18,19] studied the effect of the network topology on the spread
of epidemics to avoid cascading failures. Risau-Gusmn et al. [18]
studied the effects of switching contacts on the controlling of epi-
demic outbreaks. At each time step, it breaks connections between
susceptible and infective individuals, which works effectively only
when the epidemic spreads slowly. Another work [19] addressed
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the impact of the network topology on the viral prevalence, and
showed that the maximum eigenvalue of a network is a key factor to
determine the prevalence of the virus. Changing the topology of the
network may  be difficult, especially for the relationship networks
and the road networks. However, structure optimization method
has some advantages over the vaccination strategy. First, the struc-
ture optimization method is effective for some networks whose
topologies are easy to be changed, especially when there is no valid
vaccine. Second, the application of structure optimization method
can serve to design a robust network [20]. For example, an Internet
worm is spreading in the web server whose connections are easy
to be rewired and there is no effective way to kill the worm. Now,
changing the topology of the web server network is necessary [19].
Moreover, the structure optimization method can be used to the
design of some networks, such as the power grid networks, the ad
hoc networks, and the road networks.

We prevent the spreading process in a unique way by adjus-
ting the epidemic threshold which is an important property of
epidemic spreading [21,22]. For each spreading model, there is
an effective spreading rate ˇ/ı. If ˇ/ı ≤ �, the epidemic dies out,
otherwise the epidemic survives in the network and the infected
number increases sharply with the increase of ˇ/ı, where � is the
epidemic threshold of a network. The main advantages of the pro-
posed method are that it requires no vaccine and it can improve
the robustness of the network essentially. By optimizing the net-
work structure with low cost (i.e., redesigning some connections
in web server networks), the cascading failures can be effectively
prevented.

The epidemic threshold fundamentally depends on the network
structure itself [14], so an effective strategy for structure opti-
mization is necessary. A rewiring method [20] was  introduced to
optimize the network structure without changing any nodal degree
under the assumption that changing the degree of a node can
be more expensive than changing edges. Based on the rewiring
method, Buesser et al. [23] introduced hill-climbing and simulated
annealing strategies to enhance the network robustness, and in our
previous work [24], we devised a greedy algorithm to protect the
structural integrity from the malicious attack. Motivated by these
ideas, we try to adjust the epidemic threshold by a hybrid intelligent
algorithm.

In recent years, intelligent algorithms for solving real-world
engineering problems have attracted increasing attentions. Com-
pared with traditional algorithms, intelligent algorithms can solve
problems and find a high quality solution in a reasonable time.
Memetic algorithm (MA) is a hybrid global–local search tech-
nique, which has been successfully applied to solve various
non-deterministic polynomial time complete problems [25–29].
For example, Moscato et al. [25] introduced a memetic algorithm
by integrating evolutionary algorithm with Tabu Search techniques
for ordering microarray data. Our previous works [27,28] proposed
some memetic algorithms for community detection in complex
networks. Gong et al. [27] used hill-climbing strategy as the local
search and Ma  et al. [28] presented a multi-level learning as the
local search strategy. Lacroix et al. [29] used the memetic algorithm
with niching strategy for real-parameter optimization. In general,
the global search can find the promising search space, while local
search is to refine the local optima. Memetic algorithm combines
the advantages of global search with local search.

In this paper, we present a structure optimization strategy,
which is based on memetic algorithms and the rewiring method, to
control the epidemic outbreaks. The proposed algorithm is termed
as memetic structure optimization strategy, or MSOS for short. In
MSOS, genetic algorithm is adopted as the global search strategy,
and a modified simulated annealing algorithm combining network
property (MSACN) is adopted as the local search procedure. Exper-
iments on 5 scale-free (SF) and 6 real-world networks demonstrate

that MSOS can not only prevent the spreading of epidemics by
heightening the epidemic thresholds, but also expand the scope of
spread by lowering the thresholds. Moreover, comparison experi-
ments with other algorithms show the effectiveness and efficiency
of the proposed method.

The rest of the paper is structured as follows: Section 2 gives a
description of the related backgrounds including the introductions
of epidemic spreading model, epidemic threshold and structure
optimization strategy. In Section 3, the framework of MSOS is
described and its detailed operations are given. In Section 4, exper-
iment results on SF networks and real-world networks are given.
Section 5 shows the concluding remarks.

2. Related background

In this section, the related backgrounds about the epidemic
spreading models, epidemic threshold and structure optimization
are given. Both SIS and SIR models are commonly used in epi-
demic spreading. However, with the increase of the time step, the
number of infected node in SIR model tends to 0, while the num-
ber in SIS model converges to a constant. The converged constant
represents the number of infected nodes of a network, so we con-
sider SIS model as our epidemic spreading model. Here, a classical
SIS model in discrete time [7] is introduced. A simple formula of
epidemic threshold [14] is introduced as our objective function.
Structure optimization shows a basic rewiring method to change
the topological structure [20].

2.1. Epidemic spreading model

The spreading process can be modeled from the probability
view, and the probabilities are considered independent. During
each time interval, a susceptible node i gets infection from its infec-
tive neighbors {j|eij = 1} with probability ˇ. At the same time, an
infective node can be cured with probability ı. pi,t denotes the
probability of node i being infected at time t. Here the probabil-
ity that a node i at time t will not receive infections is denoted
as �i,t, which just happens when each neighbor of node i has not
been uninfected so far, or node i is not infected with the probabil-
ity (1 − ˇ). Moreover, Chakrabarti et al. indicated that the model
considers infinitesimal time steps, so the probability of multiple
events within the same �t  can be ignored. Therefore, �i,t can be
calculated as follows.

�i,t =
∏

j|eij=1

(pj,t−1(1 − ˇ) + (1 − pj,t−1)) =
∏

j|eij=1

(1 −  ̌ · pj,t−1) (1)

Node i is susceptible at time t if: (i) i was  susceptible before time
t and did not get infections from its neighbors at time t; and (ii) i was
infected before time t, and cured at time t. Here (1 − pi,t) represents
the probability of node i being susceptible at time t, which can be
calculated as follow.

1 − pi,t = (1 − pi,t−1)�i,t + ıpi,t−1�i,t (2)

For a network, given infected rate  ̌ and cured rate ı, the number
of infected nodes at each time can be calculated as the sum of the
infected probability of each node, and the number of infective nodes
can be computed as �t =

∑N
i=1pi,t .

Fig. 1 shows the spreading process of SIS model. At each time
step t, a susceptible node i gets infected from its neighbors with a
probability 1 − �i,t, and keeps susceptible state with a probability
�i,t. An infective node can be cured with a probability ı, and keeps
infective state with a probability 1 − ı.

The time evolution of infected nodes on a SF network with differ-
ent parameters is shown in Fig. 2. The result shows that the number
of infected nodes increases with the increase of ˇ/ı value.
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