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a  b  s  t  r  a  c  t

Deterministic  optimization  algorithms  are  very  attractive  when  the  objective  function  is  computation-
ally  expensive  and  therefore  the  statistical  analysis  of the  optimization  outcomes  becomes  too  expensive.
Among  deterministic  methods,  deterministic  particle  swarm  optimization  (DPSO)  has  several  attractive
characteristics  such  as the  simplicity  of the  heuristics,  the  ease  of implementation,  and  its  often  fairly
remarkable  effectiveness.  The  performances  of  DPSO  depend  on four  main  setting  parameters:  the  num-
ber  of swarm  particles,  their  initialization,  the  set  of coefficients  defining  the  swarm  behavior,  and  (for
box-constrained  optimization)  the  method  to handle  the  box  constraints.  Here,  a parametric  study  of
DPSO  is  presented,  with  application  to simulation-based  design  in  ship  hydrodynamics.  The  objective  is
the identification  of the  most  promising  setup  for both  synchronous  and  asynchronous  implementations
of  DPSO.  The  analysis  is performed  under  the  assumption  of  limited  computational  resources  and  large
computational  burden  of the  objective  function  evaluation.  The  analysis  is conducted  using  100  analyt-
ical  test  functions  (with  dimensionality  from  two  to fifty)  and  three  performance  criteria,  varying  the
swarm  size,  initialization,  coefficients,  and  the  method  for  the  box  constraints,  resulting  in more  than
40,000  optimizations.  The  most  promising  setup  is  applied  to  the hull-form  optimization  of  a high  speed
catamaran,  for resistance  reduction  in  calm  water  and  at fixed  speed,  using  a  potential-flow  solver.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Particle swarm optimization (PSO) was originally introduced
in [1], based on the social-behaviour metaphor of a flock of
birds or a swarm of bees searching for food. PSO belongs to
the class of heuristic algorithms for single-objective evolutionary
derivative-free global optimization. Derivative-free global opti-
mization approaches are often preferred to local approaches when
objectives are nonconvex and/or noisy, and when multiple local
optima cannot be excluded, as often encountered in simulation-
based design (SBD) optimization. The computational burden of
global optimization techniques is usually much larger compared
to local methods, so that the accuracy of the solution sought often
depends on the available computational resources.

Zhang et al. [2] presents a comprehensive survey on the PSO
variants and their application in several engineering fields, such as
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mechanical or chemical. Recent applications of PSO to ship SBD
include medium- to high-fidelity hull-form and waterjet design
optimization of fast catamarans, by morphing techniques [3,4]
and geometry modifications based on Karhunen–Loève expansion
(KLE) [5–7], and low- to medium-fidelity optimization of uncon-
ventional multi-hull configurations [8]. When global techniques are
used in design optimization, with CPU-time expensive solvers, the
optimization process is computationally expensive and its effec-
tiveness and efficiency remain an algorithmic and technological
challenge. Although complex SBD applications are often solved
by metamodels [9,10], their development and assessment require
benchmark solutions, with simulations directly connected to the
optimization algorithm. These solutions are achieved only if afford-
able and effective optimization procedures are available.

The original PSO makes use of random coefficients, aiming
at sustaining the variety of the swarm dynamics. This property
implies that statistically significant results can be obtained only
through extensive numerical campaigns. Such an approach can be
too expensive in SBD optimization for industrial applications, when
CPU-time expensive computer simulations are used directly as
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analysis tools. Furthermore, if the design problem in hand is sched-
uled within an accurate project planning, time resources might be
a tight requirement for the optimization process. For these rea-
sons efficient deterministic approaches (such as deterministic PSO,
DPSO) have been developed, and their effectiveness and efficiency
in industrial applications in ship hydrodynamics problems have
been shown, including comparisons with local methods [11] and
random PSO [5]. Moreover, the availability of parallel architectures
and high performance computing (HPC) systems has offered the
opportunity to extend the original synchronous implementation of
PSO (SPSO) to CPU-time efficient asynchronous methods (APSO),
assessed on test functions in [12], and applied in several engineer-
ing problems such as multidisciplinary optimization of commercial
aircraft [13], biomechanics [14], and swarm robotics [15]. Using dis-
tributed computing, synchronous implementations of PSO imply
that at iteration k + 1 the position and velocity of any particle is
updated after evaluating the function at all the particles positions
at iteration k. In an asynchronous implementation of PSO the posi-
tion and velocity of a particle is possibly based on the fitness value
at a subset of all particles positions.

The effectiveness and efficiency of PSO for box constrained
optimization are significantly influenced by four main setting
parameters: (a) the number of swarm particles interacting during
the optimization, (b) the initialization of the particles in terms of
initial location and velocity, (c) the set of coefficients defining the
personal or social behaviour of the swarm dynamics, and (d) the
method to handle the box constraints. These parameters and their
effects on PSO have been studied by a number of authors [16–18].
More recently the effects of the particle initialization have been
studied in [19,20], the effects of the coefficients have been shown
in [21], whereas bound handling techniques have been presented
in [22]. A comprehensive study on the PSO parameter selection has
been presented in [23] and a preliminary assessment of the per-
formances of DPSO, varying (a), (b) and (c), is presented in [24].
A survey of approaches for general constrained optimization prob-
lems in industrial design and multidisciplinary design optimization
may  be found in [25], including also general nonlinear constraints.
However, the discussion on the application of DPSO in SBD prob-
lems is still limited, lacking a systematic and comparative analysis.

The objective of the present work is the identification of the most
effective and efficient parameters for both synchronous and asyn-
chronous deterministic particle swarm optimization (SDPSO and
ADPSO), for their use in SBD procedures. The focus is on industrial
problems, directly using CPU-time expensive analyses. These make
the statistical analysis of the results too expensive and therefore
demand for deterministic algorithms. Due to the attractive fea-
tures of DPSO (such as the simplicity of the heuristics, the ease
of implementation, and its often fairly remarkable effectiveness
in industrial problems), the current study is limited to DPSO and
its implementations. A systematic comparison of DPSO with other
deterministic and stochastic methods is beyond the scopes of the
present work.

The approach includes a preliminary parametric analysis on
100 analytical test functions [26–29] characterized by different
degrees of non-linearities and number of local minima, with full-
factorial combination of: (a) number of particles (using a power
of two times the number of design variables); (b) initialization
of the particle position and velocity (using Hammersley sequence
sampling (HSS) [30]); (c) set of coefficients, chosen from literature
[12,16,17,31,32]; (d) inelastic and semi-elastic wall-type approach
for box constraints [22]. In order to handle the box constraints,
wall-type approaches are preferred instead of penalty approaches
or Lagrangian functions, which might introduce additional bias in
the analysis. The number of design variables ranges from two to fifty
and the simulation budget (maximum number of objective function
evaluations) is up to 4096 times the number of design variables.

The preliminary parametric analysis is conducted on two  subsets
of problems, respectively with less and more than ten design vari-
ables. A Intel Xeon E5-1620 v2 3.70GHz is used for the preliminary
tests. Three absolute metrics are defined and applied for the evalua-
tion of the algorithm performances, based on the distance between
PSO-found solutions and analytical optima. According with the
numerical tests, the most effective parameter choice among (a),
(b), (c), and (d) is identified, based on the associated relative vari-
ability of the results. Then, the most promising setups for SDPSO
and ADPSO are determined and applied to an industrial problem,
namely a fast catamaran hull-form optimization, for calm water and
fixed speed. The objective function is the ratio RT/W between the
total resistance (RT) and the ship weight (W). The hull-form modi-
fication is performed using a KLE-based morphing approach [5–7],
using respectively four- and six-dimensional design spaces. Com-
puter simulations are performed using the potential flow (PF) solver
CNR-INSEAN WARP [33], on a cluster of Intel Xeon E5462 2.80GHz.
Each function evaluation takes about 10 min  per node. Addition-
ally, the optimization results are compared with those obtained in
earlier research, based on a high-fidelity URANS solver [5].

2. PSO formulations

Consider the following objective function:

f (x) : R
Ndv −→ R  (1)

and the global optimization problem

min
x ∈ L

f (x), L ⊂ R
Ndv (2)

where L is a closed and bounded subset of R
Ndv and Ndv is the num-

ber of design variables. The global minimization of the objective
function f(x) requires to find a vector a ∈ L such that:

∀b ∈ L : f (a) ≤ f (b) (3)

Then, a is a global minimum for the function f(x) over L.  Since
the solution of Eq. (2) is in general an NP-hard problem, the exact
identification of a global minimum might be very difficult. There-
fore, solutions with sufficient good fitness, provided by heuristic
procedures, are often considered acceptable for several practical
purposes. Among different heuristic procedures, PSO is often the
method of choice for its capability to outreach a suitable approxi-
mate solution within a few iterations. In PSO, the positions of the
particles represent the candidate solutions and will be denoted
by x ∈ L,  with associated fitness f(x). Moreover, in this paper the
compact set L represents the box constraints.

2.1. Original formulation

The original formulation of the PSO algorithm, as presented in
[16], reads{
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The above equations update velocity and position of the ith parti-
cle at the kth iteration, where w is the inertia weight;  c1 and c2 are
respectively the social and cognitive learning rate; rk

1,i
and rk

2,i
are

uniformly distributed random numbers in [0, 1]; xi,pb is the personal
best position ever found by the ith particle in the previous itera-
tions and xgb is the global best position ever found in the previous
iterations, considering all particles.
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