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a  b  s  t  r  a  c  t

An  immunity  enhanced  particle  swarm  optimization  (IEPSO)  algorithm,  which  combines  particle  swarm
optimization  (PSO)  with  the  artificial  immune  system,  is  proposed  for  damage  detection  of structures.
Some  immune  mechanisms,  selection,  receptor  editing  and  vaccination  are  introduced  into  the  basic
PSO to improve  its performance.  The  objective  function  for damage  detection  is  based  on  vibration  data,
such as  natural  frequencies  and  mode  shapes.  The  feasibility  and  efficiency  of  IEPSO are  compared  with
the basic  PSO,  a differential  evolution  algorithm  and  a real-coded  genetic  algorithm  on  two  examples.
Results  show  that  the  proposed  strategy  is efficient  on determining  the  sites  and  the extents  of  structure
damages.
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1. Introduction

In the last few decades, techniques based on vibration responses
have been widely used for damage identification and structural
health monitoring. The premise for these techniques is that dam-
age causes a change in structural physical properties, mainly in
stiffness and damping at the damaged locations. The associated
changes in the structure will result in changes in the natural fre-
quencies, mode shapes, damping ratios, modal strain energies, or
other dynamic characteristics of the system. Therefore, monitoring
one or more of these properties of the damaged structure, the loca-
tion and extent could be identified. Extensive literature reviews
on vibration-based damage detection techniques have previously
been reported [1,2]. Numerous damage indicators have previously
been adopted, including natural frequency [3,4], mode shape [5],
modal flexibility [6],  correlation of modal data [7],  etc.

The usual model-based damage detection methods minimize
an objective function, which is defined in terms of the discrepan-
cies between the vibration data identified by modal testing and
those computed from the analytical model. However, conventional
optimization methods are gradient based and usually lead to a
local minimum only [8].  A global optimization technique is needed
to obtain a more accurate and reliable solution. In recent years,
genetic algorithm (GA) as a global optimization method has been
applied to damage detection problems [3,8–11],  and promising
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results are obtained. Some hybrid methods of GA and other tech-
niques were also proposed for damage detection. He and Hwang
[12] proposed an adaptive real-parameter simulated annealing
genetic algorithm for damage detection and was  demonstrated by
beam-type structures. Sahoo and Maity [13] adopted a hybrid neu-
ral genetic algorithm for damage assessment based on the fact that
the damage has an important effect on the static as well as dynamic
behavior of the structure. Kokot and Zembaty [14] developed a
damage reconstruction method of 3D frames based on genetic algo-
rithm and Levenberg–Marquardt local search.

Particle swarm optimization (PSO) [15–17] is a novel
population-based global optimization technique developed
recently. Although PSO shares many similarities with genetic algo-
rithms, the standard PSO does not use general genetic operators.
PSO has received wide attentions from the optimization com-
munity due to its simplicity, wide applicability and outstanding
performance. Except to theoretical studies, it has been adopted
to solve various real-world optimization problems [18–20].  As
compared to GA and several other optimization algorithms PSO is
more efficient, requiring fewer number of function evaluations,
while leading to better or the same quality of results on function
optimization [21–23] and engineering problems [24–26].  The
study of Lee et al. [26] also shows that PSO is more efficient than
GA on high dimensional problems. Similar to other evolutionary
algorithms, PSO also has the problems of premature convergence
and taking a long time to locate the exact local optimum within
the region of convergence. Therefore some variants of PSO were
proposed to improve the performance. Chen and Zhao [27] pro-
posed a PSO with adaptive population size to enhance the overall
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performance of PSO. Chen et al. [28] proposed a hybrid algorithm
that combines the exploration ability of PSO with the exploitation
ability of extremal optimization. Nickabadi et al. [29] proposed a
novel PSO with adaptive inertia weight. Sabat et al. [30] proposed
an integrated learning PSO to enhance the convergence and quality
of solution.

In this paper, PSO is applied to damage detection of engi-
neering structures. Meanwhile, to improve the convergence speed
and accuracy, several immune mechanisms, selection, receptor
editing and vaccination, are incorporated into PSO and an immu-
nity enhanced particle swarm optimization (IEPSO) algorithm is
proposed. Such hybrids have been successfully applied to global
optimization of numerical functions [28,31] and have been used
to solve various engineering problems [31,32]. To verify the per-
formance of the proposed methodology on damage detection, a
simply supported beam and a truss structure are taken as numerical
examples. IEPSO is also compared with the basic PSO, a differ-
ential evolution (DE) [33–35] algorithm and a real-coded genetic
algorithm (RCGA). Results show that, PSO and DE are more pow-
erful optimization tools than RCGA and IEPSO is the most efficient
algorithm for damage detection.

The remainder of this paper is organized as follows. In Section
2, the mathematical model for vibration-based damage detection
is described. In Section 3, the original PSO is introduced. In Section
4, the proposed IEPSO is described. In Section 5, numerical studies
are presented, and in Section 6, conclusions are provided.

2. Mathematical model for vibration-based damage
detection

2.1. Parameterization of damage

The modal characteristics of an undamaged structure are
described by the eigenvalue equation:

K�i − ω2
i M�i = 0, (1)

where K is the structural stiffness matrix, M is the mass matrix, ωi is
the ith natural frequency and �i is the corresponding mode shape.

According to continuum damage mechanics, damage can be
quantified through a scalar variable d whose values are between
0 and 1 [36]. A 0 value corresponds to no damage while values next
to 1 imply a rupture. In the context of discretized finite elements,
damage can be represented by a decrease in the stiffness of the
individual elements as

ke
d = ke(1 − de), (2)

where ke and ke
d are the eth element stiffness matrices of the

undamaged and damaged structures, respectively; de is the damage
index of the eth element.

2.2. Objective function based on vibration data

The observation that changes in structural properties cause
changes in vibration frequencies and mode shapes is the impetus
for using modal methods for damage identification and health mon-
itoring. The objective function based on both natural frequency and
mode shape changes can be expressed as
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, (3)

where wωi is a weight factor of the output error of the ith nat-
ural frequency, w�j is a weight factor of the output error of the
jth mode shape, ωe,i is the ith experimental natural frequency, ωn,i
is the ith numerical natural frequency, �e,jk is the experimental

modal displacement of the kth point of the jth mode shape, �n,jk
is the numerical modal displacement of the kth point of the jth
mode shape, and NF,  NM and NP are the number of natural fre-
quencies, number of mode shapes and number of measured points
of modal displacement. Changes of modal displacements and natu-
ral frequencies are normalized to get a better representation of the
relative change in response.

The solution space is the space of damage indices corresponding
to each finite element and the goal of optimization is to force the
damage indices corresponding to each finite element to match the
“true” damage indices of the numerical model given a particular
damage condition.

3. Particle swarm optimization

Inspired by a model of social interactions between indepen-
dent animals seeking for food, PSO utilizes swarm intelligence to
achieve the goal of optimization. Instead of using genetic opera-
tors to manipulate the individuals, each individual in PSO flies in
the search space with a velocity which is dynamically adjusted
according to its own flying experience and flying experience of
its companions. Each individual is treated as a volume-less par-
ticle (a point) in the D-dimensional search space. The ith particle
is represented as xi = (xi1, xi2, · · · , xiD) in the D-dimensional space,
where xij ∈ [lj, uj], j ∈ [1, D], lj and uj are the lower and upper bounds
of dimension j. The best previous position of the ith particle is
recorded as pi = (pi1, pi2, · · · , piD). The best particle among all the
particles is represented as pg. The velocity for particle i is repre-
sented as vi = (vi1, vi2, · · ·, viD), which is clamped to a maximum
velocity Vmax. In each generation t, the particles are manipulated
according to the following equations:

vi(t + 1) = vi(t) + r1c1(pi(t) − xi(t)) + r2c2(pg(t) − xi(t)), (4)

xi(t + 1) = xi(t) + vi(t + 1),  (5)

where c1 and c2 are two  positive constants, which control how far a
particle will move in a single iteration; r1 and r2 are random values
in the range [0,1].

Shi and Eberhart [37] later introduced inertia term w term by
modifying (1) to

vi(t + 1) = wvi(t) + r1c1(pi(t) − xi(t)) + r2c2(pg(t) − xi(t)), (6)

They proposed that suitable selection of w will provide a balance
between global and local explorations, thus requiring less itera-
tions on average to find a sufficiently optimal solution. As originally
developed, w often decrease linearly from about 0.9 to 0.4 according
to the following equation:

w = wmax − wmax − wmin

T
× t, (7)

where wmax and wmin are the initial weight and final weight, respec-
tively, T is the maximum number of allowable generations.

Four types of boundary conditions, namely, absorbing, reflect-
ing, invisible, and damping, have been reported in literature [38].
We found a damping boundary is adequate for general problems.
As for damage detection problem, generally only few elements are
damaged, and most elements are still intact. The parameter val-
ues of these intact elements are always in the upper bound [12].
In order to avoid oscillating around the upper boundary and to
quickly return to the feasible region around the lower boundary,
the following boundary condition is adopted:

xid =
{

2 · ld − xid xid < ld
ud xid > ud

, (8)

vid = −rand() · vid xid < ld or xid > ud, (9)

where rand() is a random number in the range [0,1].
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