
Please cite this article in press as: L.S. Rosa, et al., Design and analysis of evolutionary bit-length optimization algorithms for floating to
fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Design and analysis of evolutionary bit-length optimization
algorithms for floating to fixed-point conversion

L.S. Rosa ∗Q1 , A.C.B. Delbem, C.F.M. Toledo, V. Bonato
The Institute of Mathematics Sciences and Computation, The University of São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 14 October 2015
Received in revised form 11 August 2016
Accepted 19 August 2016
Available online xxx

Keywords:
Fixed-point
Floating-point
Evolutionary genetic algorithms

a b s t r a c t

Hardware designs need to obey constraints of resource utilization, minimum clock frequency, power con-
sumption, computation precision and data range, which are all affected by the data type representation.
Floating and fixed-point representations are the most common data types to work with real numbers
where arithmetic hardware units for fixed-point format can improve performance and reduce energy
consumption when compared to floating point solution. However, the right bit-lengths estimation for
fixed-point is a time-consuming task since it is a combinatorial optimization problem of minimizing the
accumulative arithmetic computation error. This work proposes two evolutionary approaches to acceler-
ate the process of converting algorithms from floating to fixed-point format. The first is based on a classic
evolutionary algorithm and the second one introduces a compact genetic algorithm, with theoretical
evidence that a near-optimal performance, to find a solution, has been reached. To validate the proposed
approaches, they are applied to three computing intensive algorithms from the mobile robotic scenario,
where data error accumulated during execution is influenced by sensor noise and navigation environ-
ment characteristics. The proposed compact genetic algorithm accelerates the conversion process up to
10.2× against the state of art methods reaching similar bit precision and robustness.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
Q3

Hardware and software optimizations are crucial for embedded
systems customized for specific applications. The optimization of
these components can improve system performance and energy
consumption. Based on the application behavior, a designer can
exploit several optimizations to avoid an unnecessary or inappro-
priate use of hardware resources. For instance, scratchpad memory
may be preferable instead of traditional cache memory in order to
improve the energy efficiency of a system [1].

Optimizations related to arithmetic operations play a central
role in a customization process, especially for embedded comput-
ing systems, which are highly sensitive to energy consumption and
hardware cost. Important project decisions can be made only by
knowing how many bits are necessary for their representations.
For instance, this can enable a designer to choose whether it is

∗ Corresponding author at: The Institute of Mathematics Sciences and Compu-Q2
tation, Avenida Trabalhador são-carlense, 400, 13566-590 São Carlos, São Paulo,
Brazil.

E-mail addresses: leandrors@usp.br
(L.S. Rosa), acbd@icmc.usp.br (A.C.B. Delbem), claudio@icmc.usp.br (C.F.M. Toledo),
vbonato@icmc.usp.br (V. Bonato).

necessary to have a dedicated arithmetic hardware unit as well as to
determine the operations to be implemented on it. All these aspects
are important to decide the hardware technology to be used. The
authors in [2] present a survey evaluating hardware implementa-
tions for several applications.

The present paper introduces a multi-objective compact genetic
algorithm (mo-cGA) based on a previous evolutionary algorithm
proposed in [3] and on the compact genetic algorithm (cGA) [4].
This approach is applied to estimate bit-lengths for variables with
real domain in algorithms according to a maximum error defined
by the user.

The method is validated using classical algorithms for mobile
robotics, where optimizations regarding performance, power con-
sumption and size are important. The case study is reported over
EKF-SLAM [5], Particle Filter (PF) [6] and the Gauss–Jordan Matrix
Inversion (MI) [7] algorithms. In this context, the main contrib-
utions of this paper are:

• A mo-cGA applied to the bit-lengths estimation problem;
• A practical solution to accelerate the computationally heavy pro-

cess of defining fixed-point arithmetic parameters, mitigating the
whole procedure of design space exploration in hardware design;

• Theoretical evidence that the proposed mo-cGA has reached a
near optimal performance, reducing the algorithm size impact

http://dx.doi.org/10.1016/j.asoc.2016.08.035
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

dx.doi.org/10.1016/j.asoc.2016.08.035
dx.doi.org/10.1016/j.asoc.2016.08.035
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:leandrors@usp.br
mailto:acbd@icmc.usp.br
mailto:claudio@icmc.usp.br
mailto:vbonato@icmc.usp.br
dx.doi.org/10.1016/j.asoc.2016.08.035

Please cite this article in press as: L.S. Rosa, et al., Design and analysis of evolutionary bit-length optimization algorithms for floating to
fixed-point conversion, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.035

ARTICLE IN PRESSG Model
ASOC 3777 1–15

2 L.S. Rosa et al. / Applied Soft Computing xxx (2016) xxx–xxx

during the conversion process and accelerating up to 10.2×, when
compared with the state of art methods of floating to fixed-point
conversion, without compromising the bit precision and robust-
ness.

The paper is organized as follows. Section 2 reviews related
works with the floating to fixed-point conversion algorithm. Sec-
tion 3 presents the bit-lengths estimation problem during the
floating to fixed-point conversion of an algorithm. Section 4
presents the heuristic approach to the bit-lengths estimation
problem. Section 5 presents a classical evolutionary approach,
previously applied to the bit-lengths estimation problem, and
introduces mo-cGA for the same problem. Section 6 presents a
performance study comparing the proposed methods. Finally, Sec-
tion 7 concludes the paper.

2. Related work

The conversion of an algorithm from floating to fixed-point
demands the estimation of bit-lengths for each single variable. The
aim is to find the smallest lengths that do not violate the maximum
error defined by the user.

Recent works already use fixed-point representation to imple-
ment the Extended Kalman Filter (EKF) algorithm to solve the
Simultaneous Localization and Mapping (SLAM) problem. The
authors in [8] present a fixed-point implementation, which uses a
constant bit-length for all variables. Another approach using fixed-
point for SLAM is described in [9], where some variables have the
bit-lengths defined according to physical constraints of a robot, and
the remaining EKF-SLAM variables are left without optimization.
These solutions apply fixed-point approach to reduce the compu-
tational cost of the whole system. However, further improvements
could be achieved if the bit-lengths of each variable are properly
defined following a given error.

Methods of floating to fixed-point conversion can be divided
into two main classes: formal and non-formal methods. Formal
methods are methods that, given the algorithm input range and a
maximum acceptable error, give a solution (ranges or bit-lengths)
that are mathematically proven to respect the maximum accept-
able error as long as the input range is within the input range given
to the method. Note that, in order to prove the ranges, a formal
method might restrain the algorithm of having some structures,
which are generally non-affine loops or unpredictable branches. On
the other hand, non-formal methods cannot guarantee the maxi-
mum acceptable error obedience, but they generally do not imply
constraints on the algorithm to be converted. It is worthy to note
that these definitions do not imply optimality.

Approaches, orientated to Digital Signal Processors (DSP)
applications, were proposed to convert from floating-point to fixed-
point format [10–15] focusing DSP applications. These approaches
are not applicable to algorithms with unpredictable feedbacks (e.g.
while loops with stop condition statically indeterminable), leaving
an open gap related to the types of algorithms that can be converted.

Formal method approaches for fixed to floating-point con-
version, such as Interval Arithmetic (IA), Affine Arithmetic (AA),
and Symbolic Methods, are also oriented to DPS applications.
These methods present performance decay when applied on
strongly non-affine computations, which is a problem mitigated
by Satisfiability-modulo Theory (SMT) based methods [16,17]. Kins-
man and Nicolici [16] present an SMT-based solution which allows
estimating fixed or floating-point custom bit lengths given an error
for DSP applications. [17] extends [16] to apply SMT on iterative
computations (a.k.a. for loops) based on representing the error as
error = (knee, slope) instead of the general error magnitude, what

mitigates “Catastrophic Cancellation” problems and is more robust
than the previously cited methods.

As reported in [17], the capabilities of applying the method to
iterative computations is restricted to the solver capabilities of solv-
ing the equation systems for the errors and precisions, which are
limited. It is worth to note that in [17] all cases of study have its
iteration spaces bounded by the user, based on mathematical for-
mulations, what can not be generically applied, especially if we
consider algorithm with unpredictable feedbacks, which are com-
mon in the autonomous robotics fields.

Boland and Constantinides [18] present a Polynomial Algebraic
Approach (PAA), which represents the computations as polyno-
mials of the ı, suchas |ı| ≤ � = 2 − m, and m is the mantissa size of
a floating point representation. Then, the equations pass through
a heuristic to define the bit-sizes. Furthermore, the Polynomial
Algebraic Approach presents a promising scalability that is not pre-
sented in the SMT solvers [18,19].

Boland and Constantinides [19] present a detailed analysis of the
IA, AA, Polynomial Algebraic Approach using Handelman representa-
tions (Handelman) [20] and Taylor methods with Interval Remainder
bounds (TwIR) [21] showing that these approaches scalability fades
quickly when applied to large algorithm. Further then, Boland and
Constantinides [19] present a scalable approach to the bit esti-
mation problem, which represents the source code operations by
a pair of different polynomials, gathering the IA and Handelman
approaches in order to balance the Handelman complexity (NP-
Hard) with the IA complexity (linear), and also balancing the IA
loose solutions (too many bits) with the Handelman solutions tight-
ness.

The approaches presented in [18,19] calculate bit lengths
for floating point representations given an algorithm, which is
different from our floating to fixed-point conversion problem. Fur-
thermore, [18] is not applicable to feedback computations, while
[19] handles statically bounded iterative computations (for loops
with bounds defined at compilation time) by unrolling the loops.
Thus, these approaches cannot be applied in our scenario.

Sarbishei et al. [22] present an algorithm to estimate fixed-point
bit lengths for an input algorithm with unpredictable feedbacks.
This approach targets infinite impulse response filters, supposing
that the application is Bounded-Input–Bounded-Output and that
there is a user given parameter W which is greater than the filter
order. Note that these two suppositions are not true in our scope,
making this approach not applicable as well.

A fundamental limitation of these formal approaches is that
they can only handle data flows which can be converted to static
single assignment (SSA) form. In other words, they cannot han-
dle algorithms which the branch conditions can depend on data
values and loops with iteration space dynamically defined [23].
Boland and Constantinides [23] present an approach to contour
these limitations based on substituting the stop conditions by a
ranking function, aiming to estimate floating-point mantissa and
exponent lengths. Even though, there are no scalable techniques to
find such functions if the loop body contains non-linear functions,
which is present in most of the autonomous robotic algorithms. If
[23] tool fails in its attempt to find a ranking function, the user will
be inquired for one.

Extensions of bit-lengths estimation for algorithms with unpre-
dictable feedbacks are presented in [24]. The authors in [24] extend
[15] to handle unpredictable feedbacks based on training sets.
However, the proposed methods are computer-intensive and time-
consuming for complex algorithms. The authors in [3] introduce
improvements over [24] with an evolutionary algorithm (EA),
reducing both conversion time and bit lengths.

In the present paper, a complete analysis is carried out on this
previous EA. We also introduce a mo-cGA to solve this problem,
which is based on an estimation of distribution algorithm proposed

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

dx.doi.org/10.1016/j.asoc.2016.08.035

Download English Version:

https://daneshyari.com/en/article/4963575

Download Persian Version:

https://daneshyari.com/article/4963575

Daneshyari.com

https://daneshyari.com/en/article/4963575
https://daneshyari.com/article/4963575
https://daneshyari.com

