Accepted Manuscript

Title: Multi-objective Colonial Competitive Algorithm for

Hybrid Flowshop problem

Author: N. Karimi H. Davoudpour

PII: S1568-4946(16)30314-3

DOI: http://dx.doi.org/doi:10.1016/j.asoc.2016.06.034

Reference: ASOC 3671

To appear in: Applied Soft Computing

Received date: 16-2-2014 Revised date: 28-5-2016 Accepted date: 24-6-2016

Please cite this article as: N.Karimi, H.Davoudpour, Multi-objective Colonial Competitive Algorithm for Hybrid Flowshop problem, Applied Soft Computing Journal http://dx.doi.org/10.1016/j.asoc.2016.06.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Multi-objective Colonial Competitive Algorithm for Hybrid Flowshop problem

N. Karimi, H. Davoudpour

Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15916-34311, Iran.

Graphical abstract

Multi-objective colonial competitive algorithm

- Generating initial empires
 - o Non-dominated sorting approach
 - o Probabilistic criterion
 - o Empires constitution
- Evaluation
- Evolution

```
Design a set of neighborhood structures N_k, k = 1,...,K_{max}
Select an initial solution x' at random;
for t = 1 to t_{\text{max}} do
              set k = 1 and x = x';
              while k < k_{\text{max}} do
                              Execute shake procedure: generate a random solution from the k th
                              neighborhood of x' (x'' \in N_k(x'))
                              Execute local search: some local search method on N_k(x'') to find new solution
                              x^*
                              if fitness (\chi^*)<fitness (x) then
                                      x'=x^*
                                      set k = 1
                                      else
                                      k = k + 1
                             end if
               end while
               t = t + 1
end for
```

Fig. 1. Basic VNS algorithm

- Exchange position of imperialist and a colony
- Imperialistic competitions
- Eliminating the powerless empires
- Convergence

Download English Version:

https://daneshyari.com/en/article/4963595

Download Persian Version:

https://daneshyari.com/article/4963595

<u>Daneshyari.com</u>