
Please cite this article in press as: M. Azzeh, A.B. Nassif, A hybrid model for estimating software project effort from Use Case Points,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.008

ARTICLE IN PRESSG Model
ASOC 3588 1–9

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A hybrid model for estimating software project effort from Use Case
Points

Mohammad Azzeh aQ1 , Ali Bou Nassif b,∗

a Department of Software Engineering, Applied Science University, P.O. BOX 166, Amman, JordanQ2
b Department of Electrical and Computer Engineering, University of Sharjah, Sharjah, United Arab EmiratesQ3

a r t i c l e i n f o

Article history:
Received 21 December 2015
Accepted 6 May 2016
Available online xxx

Keywords:
Effort estimation
Use Case Points
Radial basis neural networks
Support vector machine

a b s t r a c t

Early software effort estimation is a hallmark of successful software project management. Building a
reliable effort estimation model usually requires historical data. Unfortunately, since the information
available at early stages of software development is scarce, it is recommended to use software size metrics
as key cost factor of effort estimation. Use Case Points (UCP) is a prominent size measure designed mainly
for object-oriented projects. Nevertheless, there are no established models that can translate UCP into its
corresponding effort; therefore, most models use productivity as a second cost driver. The productivity
in those models is usually guessed by experts and does not depend on historical data, which makes it
subject to uncertainty. Thus, these models were not well examined using a large number of historical
data. In this paper, we designed a hybrid model that consists of classification and prediction stages using
a support vector machine and radial basis neural networks. The proposed model was constructed over
a large number of observations collected from industrial and student projects. The proposed model was
compared against previous UCP prediction models. The validation and empirical results demonstrated
that the proposed model significantly surpasses these models on all datasets. The main conclusion is that
the environmental factors of UCP can be used to classify and estimate productivity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Use Case Points (UCP) is a well-established software sizing tech-
nique that utilizes a UML use case diagram to estimate the size
of object-oriented projects at the early stages of software devel-
opment [2,16]. The basic idea of UCP was mainly inspired from
another software sizing technique that depends mainly on func-
tional requirements, called Function Points [1,24]. Karner [16]
established a well-defined procedure to convert the use case dia-
gram elements into a set of metrics that reflect the work effort
needed to accomplish software projects. The translation procedure
requires a standard of writing use case descriptions. Thus, it is rec-
ommended to avoid the free style that often depends on natural
language and follow a common guideline [24]. The first version of
UCP lacks validation and examination about its reliability for soft-
ware organizations. The major challenge in UCP is the arbitrary
numbers involved in calculating the software size. In fact, there is
no justification as to how these numbers were found. In addition,

∗ Corresponding author.Q4
E-mail addresses: m.y.azzeh@asu.edu.jo (M. Azzeh), anassif@sharjah.ac.ae,

ali.bounassif@gmail.com (A.B. Nassif).

there is no efficient method that can convert the UCP size into its
corresponding software effort in terms of person-hours or person-
months. Therefore, it was hard to build an effort prediction model
because of the limitation in the number of collected projects. The
first version of effort estimation based on UCP suggests the use of
productivity as a second cost driver, as shown in Eqs. (1) and (2).
This approach has long been used in many studies conducted on
UCP, but the validity of this approach has not been well examined
over a large number of observations. Q5

Software productivity is defined as a ratio between effort and
size [12,14]. This relationship has two contradicting interpreta-
tions. On one hand it can be defined as project productivity when
it is measured as effort/size. On the other hand it can be defined as
team productivity when it is measured as size/effort. Both defini-
tions are used within the software engineering community, but the
first one is preferable. The effort estimation model is usually con-
structed based on the productivity interpretation. Eq. (1) is used to
compute effort when the productivity ratio is interpreted as project
productivity. In contrast, Eq. (2) is used when the productivity
ratio is interpreted as team productivity [2]. Nevertheless, com-
puting the software productivity must be made before the effort
can be estimated. This may depend on many variables such as:
reuse percentage, type of software process, team communications,

http://dx.doi.org/10.1016/j.asoc.2016.05.008
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

dx.doi.org/10.1016/j.asoc.2016.05.008
dx.doi.org/10.1016/j.asoc.2016.05.008
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:m.y.azzeh@asu.edu.jo
mailto:anassif@sharjah.ac.ae
mailto:ali.bounassif@gmail.com
dx.doi.org/10.1016/j.asoc.2016.05.008

Please cite this article in press as: M. Azzeh, A.B. Nassif, A hybrid model for estimating software project effort from Use Case Points,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.008

ARTICLE IN PRESSG Model
ASOC 3588 1–9

2 M. Azzeh, A.B. Nassif / Applied Soft Computing xxx (2016) xxx–xxx

and the number of deliverables. Although adopting good develop-
ment practices may increase the productivity, it does not always
do so because of circumstances outside the control of the software
development team.

Effort = Productivity × UCP (1)

Effort = ˛

Productivity
× UCPˇ (2)

Estimating effort from UCP can fall into one of three approaches.
The first approach presumes that there are no historical projects
available within the software organization so the project manager
must pre-determine the productivity ratio for the software project.
In this case, the decision is heavily dependent on the estimator and
subject to a large degree of bias. Typical examples that have fol-
lowed this approach are the studies conducted by Karner [16] and
Schneider and Winters [18]. Karner [16] proposed a fixed produc-
tivity ratio (=20 person-hours/UCP) for all software projects. This
approach is not practical because it does not take into considera-
tion the type, complexity, domain, and environments of a software
project. In contrast, Schneider and Winters [18] proposed three
levels of productivity (fair = 20, low = 28, and very low = 36) person-
hours/UCP based upon analysing the environmental factors of a
software project. The second approach uses machine learning and
data mining techniques to build regression models that exhibit the
relationship between effort and UCP. This approach does not need
to pre-determine the productivity but needs historical data to build
the regression model. Nevertheless, this approach is affected by the
number of projects in the training set, setup parameters, and val-
idation procedure. The third approach attempts to use both of the
above approaches in one model. An example of this scenario is the
work proposed by Nassif et al. [2], who proposed four levels of the
productivity ratio based on the weighted sum of the environmental
factor and using an expert-based fuzzy model. Nassif et al. [2] built
a log-linear regression model that uses UCP and productivity.

Above all, we can see that all previous models were con-
structed using a very limited number of observations. In addition,
the assumptions made about using productivity ratios have not
been well examined. Using fixed or limited productivity ratios did
not contribute well to improving prediction accuracy. No previous
studies attempted to study the relationship between productivity
and environmental factors when historical data was available. In
fact, the productivity prediction should be flexible and adjustable
when historical data is present. The flexibility means that the pro-
ductivity must be affected by the UCP factors assessment. The
adjustability means the productivity of one project should be
adjusted based on the productivity from the historical projects.
Finally, there is no study that has attempted to examine the effect
of using UCP components with productivity to predict effort.

Stimulated by this situation, we proposed a new effort esti-
mation model that can support management decisions during the
feasibility study and project inception. The proposed model con-
sists of two stages. In the first stage, the historical productivity is
clustered to create fine-grained productivity labels and then clas-
sified based on environmental factors. For that purpose we used
the bisecting k-medoids clustering technique [19,22] and support
vector machine [11]. The predicted productivity, computed during
the test phase, is based on the centre of the predicted productiv-
ity label. The studies conducted by Nassif et al. [2] and Schneider
and Winters [18] showed that the environmental factors can work
as good indicators for software productivity since they reflect the
team workload within the software project. In the second stage, the
effort estimation model is built using Radial Basis Neural Network
(RBFNN) [15]. The model is trained using historical UCP and produc-
tivity variables. Then during the estimation process, the predicted
productivity from stage one is entered with the UCP of the new

Table 1
Types of actors.

Type Description

Simple Actor interacts using API
Average Actor interacts using text-based interface
Complex Actor interacts using Graphical User Interface

Table 2
Types of use cases.

Type #transactions

Simple ≤3
Average 4–7
Complex >7

project as input to RBFNN to predict effort. The proposed model has
advantages over previous models in that it can learn productivity
from environmental factors using classification and decomposition
techniques. So the number of productivity levels in each training
set depends on the structure of that set. It also offers a non-linear
learning mechanism to mimic the relationship between effort and
two other predictors (UCP and productivity)

The rest of this paper is organized as follows: Section 2 gives
an introduction to Use Case Points. Section 3 presents related
work. Section 4 introduces the proposed model. Section 5 presents
research methodology. Section 6 shows the empirical results and
discussion. Section 7 presents threats to validity and, finally, Section
8 presents conclusions.

2. An overview of Use Case Points

The UCP estimation method was first introduced by Karner [16]
to predict the size of object-oriented software projects. The UCP
is computed by converting the elements of UML use case diagram
to size metrics through a well-defined procedure. In the first step,
the estimator must classify the actors in the use case diagram into
three categories according to their difficulties: simple, average, and
complex, as shown in Table 1. Based on that the Unadjusted Actor
Weights (UAW) is computed, as shown in Eq. (3). Similarly, the
use cases are also classified into three classes (simple, average, and
complex) based on the number of transactions mentioned in the
use case descriptions, shown in Table 2. A transaction is defined
as a stimulus and response occurrence between the actor and the
system [21]. Based on that, the UUC is calculated as shown in Eq.
(4). The Unadjusted Use Case Points (UUCP) is computed based on
the summation of UAW and UUC.

UAW = 1 × sa + 2 × aa + 3 × ca (3)

where sa, aa, ca are the numbers of simple, average, and complex
actors respectively.

UUC = 5 × suc + 10 × auc + 15 × cuc (4)

where suc, auc, cuc are the numbers of simple, average, and com-
plex use cases respectively.

UUCP = UAW + UUC (5)

Finally, the UUCP should be adjusted by two sets of adjustment
factors: Technical Complexity Adjustment Factor (TCF) and Envi-
ronmental Adjustment Factor (EF). TCF is computed from a set of 13
technical factors (F1, F2, . . ., F13) that have great influence on project
performance. Similarity, EF is computed from a set of eight environ-
mental factors (E1, E2, . . ., E8) that have great effect on productivity.
Each factor in both sets can take an influence value between zero
and five and predefined weights that reflect the influence of that
factor. Eqs. (6) and (7) demonstrate how TCF and EF are calculated,

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

dx.doi.org/10.1016/j.asoc.2016.05.008

Download English Version:

https://daneshyari.com/en/article/4963614

Download Persian Version:

https://daneshyari.com/article/4963614

Daneshyari.com

https://daneshyari.com/en/article/4963614
https://daneshyari.com/article/4963614
https://daneshyari.com

