
Please cite this article in press as: R. Malhotra, An empirical framework for defect prediction using machine learning techniques with
Android software, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.032

ARTICLE IN PRESSG Model
ASOC 3569 1–17

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

An empirical framework for defect prediction using machine learning
techniques with Android software

Ruchika MalhotraQ1

Department of Software Engineering, Delhi Technological University, Bawana Road, Delhi, India

a r t i c l e i n f o

Article history:
Received 30 November 2015
Received in revised form 20 March 2016
Accepted 26 April 2016
Available online xxx

Keywords:
Object-oriented metrics
Machine-learning
Software defect proneness
Statistical tests
Inter-release validation

a b s t r a c t

Context: Software defect prediction is important for identification of defect-prone parts of a software.
Defect prediction models can be developed using software metrics in combination with defect data for
predicting defective classes. Various studies have been conducted to find the relationship between soft-
ware metrics and defect proneness, but there are few studies that statistically determine the effectiveness
of the results.
Objective: The main objectives of the study are (i) comparison of the machine-learning techniques using
data sets obtained from popular open source software (ii) use of appropriate performance measures for
measuring the performance of defect prediction models (iii) use of statistical tests for effective com-
parison of machine-learning techniques and (iv) validation of models over different releases of data
sets.
Method: In this study we use object-oriented metrics for predicting defective classes using 18 machine-
learning techniques. The proposed framework has been applied to seven application packages of well
known, widely used Android operating system viz. Contact, MMS, Bluetooth, Email, Calendar, Gallery2 and
Telephony. The results are validated using 10-fold and inter-release validation methods. The reliability
and significance of the results are evaluated using statistical test and post-hoc analysis.
Results: The results show that the area under the curve measure for Naïve Bayes, LogitBoost and Multilayer
Perceptron is above 0.7 in most of the cases. The results also depict that the difference between the
ML techniques is statistically significant. However, it is also proved that the Support Vector Machines
based techniques such as Support Vector Machines and voted perceptron do not possess the predictive
capability for predicting defects.
Conclusion: The results confirm the predictive capability of various ML techniques for developing defect
prediction models. The results also confirm the superiority of one ML technique over the other ML tech-
niques. Thus, the software engineers can use the results obtained from this study in the early phases of
the software development for identifying defect-prone classes of given software.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In software engineering, early detection of defective portions
of the software can help the software developers and engineers
in proper allocation of limited resources in testing and mainte-
nance phases of the software development. The cost of correcting
the defects increases exponentially if the defects are encountered
later in the software development. The software defect prediction
models can be used in the early phases of software development
life cycle. Further, their use reduces the testing and maintenance

E-mail address: ruchikamalhotra2004@yahoo.com

time, cost and effort of the project and thus improves the quality of
the software [1]. Q2

In order to increase the level of automation while develop-
ing software, models are effective and are gaining importance [2].
Moreover, defect prediction models can be developed by using
software metrics in conjunction with defect data obtained from
historical repositories. The models can be trained using the histor-
ical releases of the same software and validated either on the same
release or the subsequent releases of the software.

There are several machine-learning (ML) techniques pro-
posed in the literature including neural networks, Support Vector
Machines, ensemble learners and decision trees. But, it is difficult
to establish the superiority of one ML technique over the other
techniques using multiple data sets. Hence, more and more stud-

http://dx.doi.org/10.1016/j.asoc.2016.04.032
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

dx.doi.org/10.1016/j.asoc.2016.04.032
dx.doi.org/10.1016/j.asoc.2016.04.032
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:ruchikamalhotra2004@yahoo.com
dx.doi.org/10.1016/j.asoc.2016.04.032

Please cite this article in press as: R. Malhotra, An empirical framework for defect prediction using machine learning techniques with
Android software, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.04.032

ARTICLE IN PRESSG Model
ASOC 3569 1–17

2 R. Malhotra / Applied Soft Computing xxx (2016) xxx–xxx

ies should be performed in order to draw well-formed, widely
acceptable and generalized conclusions based on the experimental
evidence gathered from the obtained results [1]. The results from
the empirical studies will help to improve, refute and validate the
results obtained from the past studies.

An effective empirical framework for the development of the
prediction models should focus on the following issues: (i) use of
appropriate and large number data sets (ii) performance of the pre-
dicted models assessed using appropriate performance measures
(iii) reliability of the results using statistical tests (iv) validating the
predicted models on data different from which they are trained.
Lessman et al. [3] and Malhotra [4,5] observed that, the size of the
study, performance measures used to assess the predicted model
performance and the statistical tests to confirm the reliability of the
results are three very important factors that need to be considered
while conducting an empirical study. Also, the data sets available in
software engineering research are scarce. There are only few stud-
ies that use statistical tests to analyze the suitability and validity
of the results in literature. The evaluation of effectiveness of the
performance of the predicted models is very crucial for the assess-
ment of practical application of any defect prediction models. The
reliability of empirical experiments can only be confirmed using
the statistical tests [6]. Certain studies have pointed out that the
statistical significance of the obtained results is rarely examined
(Menzies et al. [7], Myrtviet et al. [8]). Further, previous studies have
validated the developed models using the same data, on which they
were trained.

In this work, we develop defect prediction models using
object-oriented (OO) metrics over multiple application packages
of Android operating system, open source software. Specifically,
we address the following research issues in this work: (i) low
repeatability of empirical studies, (ii) less usage of statistical tests
for comparing the effectiveness of different models, and (iii) non-
assessment of results on different releases of the software. This
study will present an empirical framework of defect prediction
models using 18 ML techniques, which will yield unbiased, accu-
rate and repeatable results. The outcome of this research is assessed
over various releases of seven application packages of Android
software available in the Google code repository—Contact, MMS,
Bluetooth, Email, Calendar, Gallery2 and Telephony.

As there is less use of statistical tests in the literature for statis-
tically determining the comparative difference between predictive
performances of developed models. Hence, after the models are
generated, we will apply statistical techniques (such as Friedman
test) to statistically determine whether there is a statistical differ-
ence between the performances of different ML techniques. We will
also perform post-hoc analysis (using Nemenyi test) to evaluate the
pairwise comparison amongst the results of different techniques.
The results are evaluated using area under the curve (AUC) obtained
from Receiver Operating Characteristics (ROC) analysis. Thus, the
following research questions are addressed in this work:

• RQ1: What is the overall predictive capability of various ML tech-
niques on seven application packages of Android software using
10-fold validation?

In this question we validate the results of predicted models
using 10-fold validation with the help of various performance mea-
sures. The overall capability of the 18 ML techniques is assessed
based on the results obtained using seven application packages of
Android software.

• RQ2: What is the performance of defect prediction models when
inter-release validation is carried out?

The performance of defect prediction models is validated using
inter-release validation in this question. The results are evaluated
using the AUC measure obtained using ROC analysis.

• RQ3: Is the performance of defect prediction models validated
using inter-release validation comparable to 10-fold validation
and is it statistically different than 10-fold validation?

We compare and assess the performance of models validated
using inter-release with models validated using 10-fold validation.
We determine the statistical difference between the results of inter-
release validation and 10-fold validation for defect prediction using
Wilcoxon test.

• RQ4: Which are the best and worst ML techniques for defect
prediction using OO metrics?

The best and worst ML techniques are determined using the
results of both 10-fold and inter-release validation over the seven
application packages of Android software. These results are based
on AUC measure and derived using the statistical test, Friedman.

• RQ5: Which pairs of ML techniques are statistically different from
each other for defect prediction?

In this research question, we determine the pairs of ML tech-
niques that are statistically different than each other. The results
are based on post-hoc analysis using Nemenyi test.

The initial results carried out using one application package of
Android software following the proposed approach are reported in
Malhotra et al. [9]. Now, we present a major extension of the pre-
liminary results presented in our previous study by evaluating the
ML techniques over six additional application packages of Android
software. The results of the previous study were not generalizable
as they were only based on one application package of Android soft-
ware. Also, we carry out post-hoc analysis using Nemenyi test to
determine the effectiveness of the results. We also determine the
statistical significance of inter-release validation and compare the
ML techniques on the basis of inter-release validation. There is no
study to the best of the authors’ knowledge that extensively com-
pares and assesses the performance of ML techniques to analyze
the relationship between OO metrics and defect prediction using
statistical tests. Hence, the main contributions of this paper are
summarized below:

(1) An extensive comparison of 18 popular ML techniques in the
context of defect prediction.

(2) The use of data collected from seven application packages over
multiple releases of widely used Android software.

(3) Statistical analysis of the obtained results for comparison of ML
techniques.

(4) An inter-release validation of models developed in order to
obtain unbiased and generalized results.

The rest of the paper is organized as follows: Section 2 sum-
marizes the related work and Section 3 describes the empirical
research framework followed in this paper. Section 4 presents the
research methodology and Section 5 provides the answers to the
research questions. The threats to validity in the current research
are summarized in Section 6 and the conclusions of the work are
presented in Section 7.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

dx.doi.org/10.1016/j.asoc.2016.04.032

Download	English	Version:

https://daneshyari.com/en/article/4963617

Download	Persian	Version:

https://daneshyari.com/article/4963617

Daneshyari.com

https://daneshyari.com/en/article/4963617
https://daneshyari.com/article/4963617
https://daneshyari.com/

