
Please cite this article in press as: G. Demiroz, C. Yilmaz, Using simulated annealing for computing cost-aware covering arrays, Appl.
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.022

ARTICLE IN PRESSG Model
ASOC 3764 1–16

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Using simulated annealing for computing cost-aware covering arrays

Gulsen Demiroz ∗Q1 , Cemal Yilmaz
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey

a r t i c l e i n f o

Article history:
Received 30 December 2015
Received in revised form 11 August 2016
Accepted 12 August 2016
Available online xxx

Keywords:
Software quality assurance
Combinatorial interaction testing
Covering arrays
Cost-aware testing
Simulated annealing

a b s t r a c t

The configuration spaces of software systems are often too large to test exhaustively. Combinatorial
interaction testing approaches, such as covering arrays, systematically sample the configuration space
and test only the selected configurations. In an attempt to reduce the cost of testing, standard t-way cover-
ing arrays aim to cover all t-way combinations of option settings in a minimum number of configurations.
By doing so, they simply assume that every configuration costs the same. When the cost varies from one
configuration to another, however, minimizing the number of configurations is not necessarily the same
as minimizing the cost. To overcome this issue, we have recently introduced cost-aware covering arrays.
In a nutshell, a t-way cost-aware covering array is a standard t-way covering array that “minimizes” a
given cost function modeling the actual cost of testing. In this work we develop a simulated annealing-
based approach to compute cost-aware covering arrays, which takes as input a configuration space model
enhanced with a cost function and computes a cost-aware covering array by using two alternating neigh-
boring state generation strategies together with a fitness function expressed as a weighted sum of two
objectives: covering all required t-way option setting combinations and minimizing the cost function.
To the best of our knowledge, the proposed approach is the first approach that computes cost-aware
covering arrays for general, non-additive linear cost functions with multiplicative interaction effects.
We evaluate the approach both by conducting controlled experiments, in which we systematically vary
the input models to study the sensitivity of the approach to various factors and by conducting experi-
ments using real cost functions for real software systems. We also compare cost-aware covering arrays
to standard covering arrays constructed by well-known algorithms and study how fast the construction
costs are compensated by the cost reductions provided. Our empirical results suggest that the proposed
approach is more effective and efficient than the existing approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The configuration spaces of configurable software systems areQ3
often too large to test exhaustively. In general, the number of
possible configurations grows exponentially with the number of
configuration options. Therefore, testing all configurations in a
timely manner is often far beyond the available resources.

Combinatorial interaction testing (CIT) approaches systemati-
cally sample the configuration space and test only the selected
configurations. These approaches take as input a configuration space
model. In its simplest form, this model includes a set of configura-
tion options, each of which can take on a small number of settings.
Given a configuration space model, the sampling is typically carried
out by computing a combinatorial object, called a covering array.

∗ Corresponding author.Q2
E-mail addresses: gulsend@sabanciuniv.edu (G. Demiroz),

cyilmaz@sabanciuniv.edu (C. Yilmaz).

A t-way covering array is a set of configurations in which each valid
combination of option settings for every combination of t options
appears at least once [1]. In this definition, t is often referred to as
the coverage strength.

The basic justification for using CIT is that t-way covering arrays
can (under certain assumptions) reveal all failures caused by the
interactions of t or fewer options [2]. The results of many empir-
ical studies suggest that the majority of option-related failures in
practice are caused by the interactions between only a small num-
ber of options; thus, t is small in practice, typically 2 ≤ t ≤ 6 [1,3–5].
Therefore, covering arrays are an efficient and effective way of
revealing such failures [1,3–5].

In an attempt to reduce the actual cost of testing, standard cov-
ering arrays aim to cover all required t-way combinations of option
settings using a minimum number of configurations. By doing so,
they assume that every configuration costs the same. However, we
empirically demonstrated that the cost may vary from one con-
figuration to another and when it does, minimizing the number
of configurations is not necessarily the same as minimizing the

http://dx.doi.org/10.1016/j.asoc.2016.08.022
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

dx.doi.org/10.1016/j.asoc.2016.08.022
dx.doi.org/10.1016/j.asoc.2016.08.022
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:gulsend@sabanciuniv.edu
mailto:cyilmaz@sabanciuniv.edu
dx.doi.org/10.1016/j.asoc.2016.08.022

Please cite this article in press as: G. Demiroz, C. Yilmaz, Using simulated annealing for computing cost-aware covering arrays, Appl.
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.022

ARTICLE IN PRESSG Model
ASOC 3764 1–16

2 G. Demiroz, C. Yilmaz / Applied Soft Computing xxx (2016) xxx–xxx

actual cost of testing [6,7]. For example, in a study we conducted
on MySQL, a widely-used and highly-configurable database man-
agement system, we observed that the cost of configuring MySQL
Community Server (a component of the system) with its default
configuration takes about 6 min on average (on an 8-core Intel Xeon
2.53 GHz CPU with 32 GB of RAM). On the other hand, configuring
the server with NDB cluster storage support, a feature that enables
clustering of in-memory databases, takes about 9 min (50% more),
as this feature needs to be compiled into the system [6]. Conse-
quently, reducing the number of configurations that include the
NDB feature in a covering array without adversely affecting the
coverage properties of the array can greatly reduce the amount of
time required for testing.

Standard covering arrays, on the other hand, do not take actual
testing costs into account when computing covering arrays. To
overcome this shortcoming, we have recently introduced a novel
combinatorial object for testing, called a cost-aware covering array
[6]. A t-way cost-aware covering array is a t-way covering array
that “minimizes” a given cost function, which models the actual
cost of testing. Fig. 1 illustrates cost-aware covering arrays using
an example scenario. In this scenario, the software under test (SUT)
has seven binary options (o1, . . ., o7) with two costly option set-
ting combinations: (o1 = 0) and (o2 = 1 ∧ o3 = 1). Furthermore, the
system is to be tested using a 2-way covering array. Fig. 1a and b
presents a standard 2-way covering array and a 2-way cost-aware
covering array, respectively. Although both of these arrays are valid
2-way covering arrays for the given scenario, the costly combina-
tions appear three times more frequently in the standard covering
array than in the cost-aware covering array; 9 appearances of the
costly combinations in the standard covering array vs. 3 appear-
ances in the cost-aware covering array (highlighted as bold in the
figure). That is, if we, for example, assume that both costly combi-
nations cost the same and the cost of the remaining combinations
is negligible compared to that of the costly combinations, then the
cost-aware covering array in Fig. 1b covers all 2-way option setting
combinations at one third of the cost compared to the standard
covering array in Fig. 1a.

In an earlier work [6], we presented a greedy, proof-of-concept
algorithm to compute cost-aware covering arrays and empiri-
cally demonstrated that they could reduce testing costs without
adversely affecting the coverage properties of covering arrays.
However, the proposed algorithm addressed only a simple and
quite specific scenario, in which it is assumed that: (1) the config-
uration space is composed of compile-time and runtime options;
(2) all compile-time configurations cost the same; and (3) the rest
of the costs are negligible. For this scenario, minimizing the cost
was effectively the same as minimizing the number of times the
system under test was built (i.e., minimizing the number of unique
compile-time configurations).

In this work, however, we present a simulated annealing-based
algorithm to compute cost-aware covering arrays for non-additive
linear cost functions with multiplicative interaction effects, where
the cost may vary from one option setting combination to another.
To the best of our knowledge, this work is the first work that com-
putes cost-aware covering arrays for such general cost functions.

Given a standard configuration space model enhanced with a
cost function, the approach starts with a standard t-way covering
array computed as the initial state and proceeds by using two alter-
nating neighboring state generation strategies guided by a fitness
function expressed as a weighted sum of two objectives: covering
all required t-way combinations of option settings and minimizing
the cost function. Simulated annealing has been used to compute
standard covering arrays [8–11]. Our work differs in that we use it
to compute cost-aware covering arrays.

We evaluate the proposed approach both (1) by conduct-
ing controlled experiments, in which we systematically vary the

configuration space models and the cost functions to study the sen-
sitivity of the approach to various factors, including the coverage
strength, the number of configuration options, the percentage of
costly options, the number of costly option setting combinations,
the cardinality of costly combinations, and their cost impact ratio
and (2) by conducting experiments using real cost functions cre-
ated for two widely-used highly-configurable software systems,
namely Apache (an HTTP server) and MySQL (a database man-
agement system). Furthermore, we compare the cost-effectiveness
of cost-aware covering arrays to standard covering arrays con-
structed by well-known algorithms, namely IPOG [12,13], IPOF [14],
and IPOF2 [14], and study how fast the construction costs of cost-
aware covering arrays are compensated by the cost reductions they
provide.

Overall, compared to standard covering arrays, the cost-aware
covering arrays generated by the proposed approach were 26.18%,
20.81%, and 19.81% less costly when t = 2, 3, and 4, respectively.
Furthermore, the average compensation rate, i.e., the number of
times a cost-aware covering array is to be used for testing before its
construction time can be compensated, was 0.07 with a maximum
rate of 2.52. That is, cost-aware covering arrays were on average
more cost-effective than standard covering arrays even during the
first use. And in the worst case, at most 3 uses were required before
cost-aware covering arrays became more cost-effective.

The remainder of the paper is organized as follows: Section 2
provides background information; Section 3 describes the pro-
posed approach; Section 4 presents the experimental studies;
Section 5 discusses potential threats to validity; Section 6 sum-
marizes related work; and Section 7 presents concluding remarks
and possible directions for future work.

2. Background information

In this section we provide background information on standard
covering arrays, cost-aware covering arrays, and simulated anneal-
ing.

2.1. Covering arrays

Covering arrays take as input a configuration space model,
which implicitly defines the valid configuration space for the sys-
tem under test. In its simplest form, the model M = 〈O, V〉 includes
a set of configuration options O = {o1, o2, . . ., on} and their pos-
sible values V = {V1, V2, . . ., Vn}, where each configuration option
oi (1 ≤ i ≤ n) takes a value from a finite set of |Vi| distinct values
Vi = {vi1, vi2, . . ., vi|Vi |}.

Given a configuration space model M = 〉O, V〈:

Definition 1. A tuple � = {〈oi1 , vj1 〉, 〈oi2 , vj2 〉, . . ., 〈oik
, vjk

〉} is a set
of option-value pairs for a combination of k distinct options, such
that 1 ≤ k ≤ n, 1 ≤ i1 < i2 < · · · < ik ≤ n, and vjp ∈ Vip for p = 1, 2, . . ., k.

Definition 2. A t-tuple �t is a tuple comprised of t configuration
options, where 1 ≤ t ≤ n.

Let ˚t be the set of all t-tuples.

Definition 3. A configuration c is an n-tuple, i.e., c ∈ ˚n, where
n = |O|.

Definition 4. The configuration space C = {c : c ∈ ˚n} is the set of
all configurations.

Definition 5. A t-way covering array CA(t, M = 〈O, V〉) is a set of
configurations, in which each t-tuple appears at least once, i.e., CA(t,
M = 〈O, V〉) = {c1, c2, . . ., cN}, such that ∀ �t ∈ ˚t ∃ ci ⊇ �t, where ci ∈ C
for i = 1, 2, . . ., N.

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

dx.doi.org/10.1016/j.asoc.2016.08.022

Download English Version:

https://daneshyari.com/en/article/4963624

Download Persian Version:

https://daneshyari.com/article/4963624

Daneshyari.com

https://daneshyari.com/en/article/4963624
https://daneshyari.com/article/4963624
https://daneshyari.com

