
Please cite this article in press as: M. Pedemonte, et al., A Systolic Genetic Search for reducing the execution cost of regression testing,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.018

ARTICLE IN PRESSG Model
ASOC-3701; No. of Pages 17

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A Systolic Genetic Search for reducing the execution cost
of regression testing

Martín Pedemontea,∗, Francisco Lunab, Enrique Albab

a Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay
b Depto. de Lenguajes y Ciencias de la Computación, Univ. de Málaga, E.T.S. Ingeniería Informática, Campus de Teatinos, 29071 Málaga, Spain

a r t i c l e i n f o

Article history:
Received 31 December 2015
Received in revised form 16 June 2016
Accepted 4 July 2016
Available online xxx

Keywords:
Regression testing
Evolutionary algorithms
Parallel metaheuristics
GPU
CUDA

a b s t r a c t

The Test Suite Minimization Problem (TSMP) is a NP-hard real-world problem that arises in the field of
software engineering. It consists in selecting a minimal set of test cases from a large test suite, ensuring
that the test cases selected cover a given set of requirements of a piece of software at the same time
as it minimizes the amount of resources required for its execution. In this paper, we propose a Systolic
Genetic Search (SGS) algorithm for solving the TSMP. SGS is a recently proposed optimization algorithm
capable of taking advantage of the high degree of parallelism available in modern GPU architectures.
The experimental evaluation conducted on a large number of test suites generated for seven real-world
programs and seven large test suites generated for a case study from a real-world program shows that
SGS is highly effective for the TSMP. SGS not only outperforms two competitive genetic algorithms, but
also outperforms four heuristics specially conceived for this problem. The results also show that the
GPU implementation of SGS has achieved a high performance, obtaining a large runtime reduction with
respect to the CPU implementation for solutions with similar quality. The GPU implementation of SGS
also shows an excellent scalability behavior when solving instances with a large number of test cases.
As a consequence, the GPU-based SGS stands as a state of the art alternative for solving the TSMP in
real-world software testing environments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Software testing is one of the core activities of the software
development process. It involves the execution of a piece of soft-
ware to gather information for evaluating the quality of that soft-
ware. In general, this execution uses test cases that are designed for
exercising at least one feature (functional or non-functional) of the
piece of software under evaluation. Although initially testing was
considered necessary evil, it has become a key aspect of software
development process. Testing has been reported to represent more
than fifty percent of the cost of software development [1], while
the total labor resources spent in testing range from 30 to 90% [2].

Regression testing is a testing activity performed to ensure that
changes made to an existing piece of software do not introduce
errors. During the evolution of a piece of software, the software
tends to grow in size and complexity. This evolution also provokes
that new test cases are continually generated and added to the
test suite to validate the latest modifications to the piece of soft-
ware. For this reason, the execution of the entire test suite can be

∗ Corresponding author. Tel.: +598 27114244x1048.
E-mail addresses: mpedemon@fing.edu.uy (M. Pedemonte), flv@lcc.uma.es

(F. Luna), eat@lcc.uma.es (E. Alba).

impracticable. For instance, in a real-world test suite for regression
testing from Cisco containing 2320 test cases [3], the runtime of
each test case takes about 10–100 min, yielding a final total exe-
cution time of the test suite of around 5 weeks. In consequence,
different approaches have been proposed in order to reduce the
effort devoted to regression testing [4].

Search-based software engineering (SBSE) [5] is one recent field
in Software Engineering that is based in applying search-based opti-
mization techniques (as Evolutionary Algorithms, EAs) to software
engineering problems. SBSE has been successfully used to solve
problems from all the phases of the software development pro-
cess, being software testing one of the most addressed issues [5].
In particular, the Test Suite Minimization Problem (TSMP) is a NP-
hard real-world software testing problem that arises in regression
testing. It is based on reducing a large test suite by removing redun-
dant test cases, ensuring that a set of test goals are satisfied [4]. The
goal is to find a reduced test suite that minimizes the overall cost
of the suite and that covers a given set of elements of the piece of
software that is being tested.

As realistic software programs involve thousands of lines of code
(and so the test suites used for their testing have thousands of
test cases) exact algorithms are discarded for this problem because
they could lead to huge computing times. Even metaheuristics may

http://dx.doi.org/10.1016/j.asoc.2016.07.018
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.07.018
dx.doi.org/10.1016/j.asoc.2016.07.018
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mpedemon@fing.edu.uy
mailto:flv@lcc.uma.es
mailto:eat@lcc.uma.es
dx.doi.org/10.1016/j.asoc.2016.07.018

Please cite this article in press as: M. Pedemonte, et al., A Systolic Genetic Search for reducing the execution cost of regression testing,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.018

ARTICLE IN PRESSG Model
ASOC-3701; No. of Pages 17

2 M. Pedemonte et al. / Applied Soft Computing xxx (2016) xxx–xxx

be highly computationally expensive when addressing real-world
TSMP instances. In order to tackle this problem properly, we make
use of parallel metaheuristics [6]. These algorithms do not only
allow to reduce the runtime of the algorithms, but also usually
provide new enhanced search engines that could lead to improve
the quality of results obtained by traditional sequential algorithms.
Despite their advantages, there are very few works that use parallel
metaheuristics for solving SBSE problems [7].

Systolic Genetic Search (SGS) is a new optimization algorithm
that merges ideas from systolic computing and metaheuristics [8].
SGS was conceived to exploit the high degree of parallelism avail-
able in modern GPU architectures. It has already shown its potential
for the knapsack problem, the massively multimodal deceptive
problem, and the next release problem, finding optimal or near
optimal solutions in short runtimes [8].

In the present article we investigate the use of a SGS algorithm
for solving the cost-aware Test Suite Minimization Problem. Our
first concern is to show whether SGS is effective for this problem.
With this in mind, a comparative study on the numerical perfor-
mance is conducted between SGS, two EAs and four heuristics
specially designed for the problem at stake. Since SGS is explicitly
designed for GPU architectures, a second issue is to evaluate if the
GPU implementation of the proposed SGS is efficient and what kind
of performance benefits can be obtained by such implementation
with respect to a CPU implementation. To this end, we compara-
tively analyze the performance of the implementation on GPU of
SGS and two evolutionary algorithms. Finally, our third concern
is how well the number of test cases and test goals impact in the
performance of the CPU and GPU implementations of SGS. We can
summarize the contributions of this work as follows:

• It presents a new success of SGS for solving an optimization prob-
lem in a unexplored domain. The results obtained are not only
relevant for the SGS but also are relevant for the cost-aware TSMP.
Because SGS is highly effective for solving instances from seven
real-world programs and a case study from a real-world program,
without using any problem-specific knowledge, outperforming
four heuristics specifically designed for this problem.

• It shows that the GPU implementation of SGS is able to achieve a
high performance, obtaining a large runtime reduction compared
to the sequential implementation for similar solutions. Moreover,
the GPU-based SGS is the EA with the best performance of this
study. In consequence, the GPU-based SGS is able to both obtain
excellent quality solutions and execute in a short runtime.

• It shows that the GPU-based SGS has an excellent scalability
behavior when solving instances with a larger number of test
cases. On the other hand, when a larger number of test goals is
considered, the performance of the GPU-based SGS is just mini-
mally degraded.

This article is organized as follows. Section 2 reviews the pre-
liminaries of this work. Then, in Section 3, we describe the SGS
algorithm and how it is instantiated for tackling the TSMP. Section 4
presents state of the art heuristic techniques for the cost-aware
TSMP that are used for comparison in this work. Then, Section 5
describes the details of the empirical study and analyzes the results
of the experimental evaluation. Threats to validity are discussed on
Section 6. Then, Section 7 discusses the related papers in the liter-
ature. Finally, in Section 8, we outline the conclusions of this work
and suggest future research directions.

2. Preliminaries

In this section we present some background on the TSMP and
on the architecture of the GPUs.

2.1. Test Suite Minimization Problem

Three different problem formulations have been proposed for
test suite reduction in regression testing [4]. The Test Case Selection
Problem consists in choosing a subset of the test suite based on
which test cases are relevant for testing the changes between the
previous and the current version of the piece of software. Another
approach is known as the Test Case Prioritization Problem, which
consists in finding an ordering of the test cases according to some
specific criteria, such that test cases ordered first should be run
first. In this formulation, it is assumed that all the test cases could be
executed but the testing process could be stopped at some arbitrary
point. As a consequence, if the test processing is stopped, the test
cases that maximize the specific criteria used for ordering them
have already been executed.

In the present work, we adopt the problem formulation known
as Test Suite Minimization Problem (TSMP) [4,9]. TSMP belongs to
the class of NP-hard problems since it is equivalent to the Minimal
Hitting Set Problem. It lies in reducing a test suite by eliminating
redundant test cases, and the goal is to select a minimal set of test
cases that cover a set of test goals and minimizes the amount of
resources required for its execution. It is formally defined as fol-
lows.

Let T = {t1, . . ., tn} be a test suite with n test cases for a piece
of software and R = {r1, . . ., rm} be the set of m test goals (require-
ments) that has to be covered with the test cases. Each test case
covers several test goals and this relation is represented by a cov-
erage matrix M = [mij] of dimension n × m, whose entries are either
0 or 1. If mij = 1 the test case i covers the test goal j, otherwise it
does not covers the test goal. Also, each test case ti has associated
a positive cost ci that measures the amount of resources required
for its execution.

The single objective TSMP consists in finding a subset of test
cases of the original test suite that covers all the test goals (100%
of coverage) and minimizes its overall cost. The single objective
TSMP can be formulated as the integer programming model pre-
sented in Eqs. (1)–(3), being xi the binary decision variables of the
problem that indicate whether the test case ti is included or not in
the reduced test suite.

minimize
n∑

i=1

cixi (1)

subject to:
n∑

i=1

mijxi � 1, ∀j = 1, . . ., m (2)

xi ∈ {0, 1}, ∀i = 1, . . ., n (3)

There are several alternatives that can be considered for the
cost associated to the test cases. A classical option [10–15] is to
consider all costs equal to one (ci = 1, ∀i = 1, . . ., n). In such case,
the problem is equivalent to find a reduced test suite with a min-
imum number of test cases. However, the cost is often associated
with a specific metric that is related to the cost of executing the
test case, as the number of virtual code instructions that are run
in a profiling tool [16] or the runtime measured in a particular
platform [17]. This formulation is also known as the cost-aware
TSMP.

Recently, the research community has also paid attention to the
multi-objective TSMP. It has been proposed a bi-objective formu-
lation [7,16] in which the conflicting objectives are the number
of virtual code instructions executed in a profiling tool and the
percentage of coverage of the test goals.

In spite of the existence of this multi-objective formulation,
in our opinion the single-objective TSMP is still a relevant and
important problem. For this reason, in this paper we adopt the

dx.doi.org/10.1016/j.asoc.2016.07.018

Download English Version:

https://daneshyari.com/en/article/4963625

Download Persian Version:

https://daneshyari.com/article/4963625

Daneshyari.com

https://daneshyari.com/en/article/4963625
https://daneshyari.com/article/4963625
https://daneshyari.com

