
Please cite this article in press as: K. El-Fakih, et al., Heuristics for deriving distinguishing experiments of nondeterministic finite state
machines, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.019

ARTICLE IN PRESSG Model
ASOC-3702; No. of Pages 10

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied  Soft  Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

Heuristics  for  deriving  distinguishing  experiments  of
nondeterministic  finite  state  machines

Khaled  El-Fakih a,∗,  Abdul  Rahim  Haddad b, Nassima  Aleb c, Nina  Yevtushenko d

a Computer Science & Engineering Department, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
b Computer Science & Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
c University of Science and Technology Houari Boumediene, Algeria
d Tomsk State University, Russia

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 9 January 2016
Received in revised form 3 July 2016
Accepted 11 July 2016
Available online xxx

Keywords:
Software engineering
Functional testing
Conformance testing
Distinguishing experiments
Nondeterministic finite state machines
Mutation testing
Heuristics
Evolutionary algorithms
Genetic algorithms

a  b  s  t  r  a  c  t

Derivation  of  input  sequences  for distinguishing  states  of  a finite  state  machine  (FSM)  specification  is well
studied  in  the  context  of FSM-based  functional  testing.  We  present  three  heuristics  for  the  derivation  of
distinguishing  sequences  for nondeterministic  FSM  specifications.  The  first is  based  on  a  cost  function
that  guides  the  derivation  process  and  the  second  is a genetic  algorithm  that  evolves  a population  of
individuals  of  possible  solutions  (or input  sequences)  using  a fitness  function  and  a crossover  operator
specifically  tailored  for the  considered  problem.  The  third  heuristic  is  a mutation  based  algorithm  that
considers  a randomly  generated  input  sequence  as  a  candidate  solution,  and  if the  candidate  is not  a
distinguishing  sequence,  then  the  algorithm  tries  to  find  a solution  by  appropriately  mutating  the  con-
sidered  candidate.  Experiments  are  conducted  to assess  the  performance  of the  considered  algorithms
with  respect  to execution  time,  virtual  memory  consumption,  and  quality  (length)  of  obtained  sequences.
Experiments  are  conducted  using  randomly  generated  machines  with  a various  number  of  states,  inputs,
outputs,  and  degrees  of  non-determinism.  Further,  we  assess  the  impact  of  varying  the number  of  states,
inputs,  outputs,  and  degree  of  non-determinism.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Testing is a crucial yet expensive part of the software develop-
ment process. One of the most promising approaches for reducing
the costs of testing is to consider the derivation of tests from formal
specifications (or models) as such test derivation can be automated.
Furthermore, formal specifications provide a rigorous discipline for
functional testing of communication protocols and other reactive
systems. Accordingly, in the past years, many functional (confor-
mance) test derivation methods have been developed for deriving
tests when the system specification and implementation are rep-
resented as (Mealy) Finite State Machines (FSMs). For some related
methods, experiments and surveys, the reader may  refer to [1–8].
An FSM is a state transition system which has a finite number
of inputs, outputs, states and a finite number of transitions each
labeled by an input/output pair. FSMs are widely used in various

∗ Corresponding author.
E-mail addresses: kelfakih@aus.edu (K. El-Fakih),

abdulrahim.haddad@gmail.com (A.R. Haddad), na.aleb@gmail.com (N. Aleb),
yevtushenko@sibmail.com (N. Yevtushenko).

application domains such as communication protocols and other
reactive systems. Moreover, FSMs are the underlying models for
formal description techniques, such as statecharts, SDL, and UML.

In FSM-based testing, we have a black-box FSM Implementa-
tion Under Test (IUT) about which we lack some information, and
we want to deduce this information by conducting experiments on
this IUT. An experiment consists of applying input sequences to the
IUT, observing corresponding output responses, and drawing a con-
clusion about the IUT. Well-known types of experiments that are
widely used in FSM-based testing are distinguishing experiments.
An input sequence applied when performing a distinguishing
experiment is called a distinguishing sequence. Distinguishing
sequences have been constructed for different types/classes of
FSMs. Given an FSM, assuming that the initial state is unknown,
a distinguishing sequence determines the initial state of the FSM
before the experiment and such a sequence is widely used in
FSM-based conformance testing [1–8] for checking the correspon-
dence between transitions of an IUT and those of the specification
FSM. In addition, distinguishing sequences are used in FSM-
based mutation [9–11] and fault diagnosis techniques [12–15].
For example, test derivation from a given specification machine
can be done by constructing appropriate mutants from the given

http://dx.doi.org/10.1016/j.asoc.2016.07.019
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.07.019
dx.doi.org/10.1016/j.asoc.2016.07.019
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:kelfakih@aus.edu
mailto:abdulrahim.haddad@gmail.com
mailto:na.aleb@gmail.com
mailto:yevtushenko@sibmail.com
dx.doi.org/10.1016/j.asoc.2016.07.019


Please cite this article in press as: K. El-Fakih, et al., Heuristics for deriving distinguishing experiments of nondeterministic finite state
machines, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.019

ARTICLE IN PRESSG Model
ASOC-3702; No. of Pages 10

2 K. El-Fakih et al. / Applied Soft Computing xxx (2016) xxx–xxx

specification machine considering selected types of faults, and then
distinguishing sequences (test cases) are derived to separate the
derived mutants from the given specification. Furthermore, in FSM
and extended FSM based fault diagnosis, several nondeterministic
FSMs, called mutation machines or fault functions, can be con-
structed from a given specification machine considering selected
types of faults. For example, one could derive several mutation
machines considering transfer and output faults at selected tran-
sitions of the specification machine then distinguishing sequences
(diagnostic tests) can be derived for these mutation machines such
that when applied to the given faulty IUT these tests help identify-
ing the faults of the IUT.

Given a state of a nondeterministic FSM, there can be several
output responses at the state to the same input sequence. Given
two states of the FSM, a distinguishing sequence is called a sepa-
rating sequence [16] if the sets of output responses (or sequences)
produced at the considered states in response to the input sequence
are disjoint.

Nowadays, analysis of nondeterministic systems is capturing
a lot of attention. Nondeterminism occurs due to various rea-
sons such as performance, flexibility, limited controllability, and/or
abstraction. Accordingly, some research work has been done on the
derivation of distinguishing sequences for nondeterministic FSMs
[17–20]. In particular, for separating sequences, Alur et al. [17] have
shown that, in general, the length of a separating sequence can be
exponential. Spitsyna et al. [18] proposed a method that can be
used for deriving a shortest separating sequence (if such a sequence
exists) of two given FSMs (or for two states of a given FSM). Given
two states of an FSM with n states, the length of a shortest sepa-

rating sequence can reach 2( n2 )2−1 [18]. Alur et al. [17] studied the
complexity of the problem of deriving a separating sequence and
showed that the problem is PSPACE-complete.

In this paper, we aim at reducing the efforts (execution time and
memory) of deriving separating sequences. In particular, we first
implement and experiment with the algorithm, hereafter called
Exact Algorithm (EA), given in [18] where breadth first search is
used while exploring a corresponding search tree (a successor
tree). Then, we propose three heuristics for solving the problem.
The first, called Heuristic Algorithm (HA), is similar to EA; with
an alteration that the exploration of the search tree is guided
by a cost function that selects the most promising nodes of the
tree while conducting the search for a solution. Similar to EA, HA
guarantees the derivation of a separating sequence (when such a
sequence exists) but in general, HA might not return a shortest
separating sequence. However, according to the conducted exper-
iments, HA not only outperforms EA in terms of execution time
but also it always derives a shortest separating sequence as EA.
Furthermore, we present and experiment with two  other heuris-
tics that can be used for deriving separating sequences, namely,
a Genetic Algorithm (GA) that works on evolving a set of possible
solutions (input sequences) using a fitness function and a crossover
operator appropriately developed for the considered problem. GAs
were used for efficiently solving a variety of complex engineering
and testing problems [21–25]. We  also present a Mutation Based
(MA) algorithm that initially randomly derives a candidate solu-
tion to the problem (input sequence) of particular length and then
if the derived candidate is not a separating sequence, MA contin-
ues searching for a solution by appropriately mutating the derived
candidate. Unlike EA and HA, both GA and MA  may  not provide a
solution even when a solution exists; in addition, similar to HA,
when GA/MA finds a solution it might not provide the shortest
one. However, our experiments show that in most cases GA and
MA find a separating sequence (if it exists). Furthermore, GA and
MA can process bigger machines compared to EA and HA and also
the execution time of GA and MA  does not tend to significantly

0 1

2 3

4

b/0

a/0

b/0

a/0

a/1

a/2
a/1

b/0

b/0

a/1

b/2
a/0

a/1

Fig. 1. Nondeterministic FSM M.

increase when considering bigger machines. We  assess the per-
formance of the considered algorithms with respect to execution
time and quality (length) of obtained solutions using randomly
generated machines with various attributes (states, inputs, out-
puts, and minimum degrees of non-determinism). The minimum
(maximum) degree of non-determinism represents the minimum
(maximum) number of outgoing transitions at each state under
each input of the generated machine. Further, we assess the impact
of varying the number of states, inputs, outputs, and minimum
degree of non-determinism on execution time and solution quality.
We  also consider stress testing EA and HA and assess their execu-
tion time using special machines which have two states that are
separable only by a sequence of exponential length. A summary of
experimental results is reported in Section 5.

This paper is organized as follows. Section 2 contains prelim-
inaries and the exact algorithm. Section 3 includes the proposed
algorithms while experimental evaluation is presented and sum-
marized in Sections 4 and 5, respectively. Section 6 concludes the
paper.

2. Preliminaries

2.1. Finite state machines and related definitions

A finite state machine (FSM) S, simply called a machine through-
out the paper, is a 4-tuple 〈S, I, O, h〉, where S is a finite nonempty set
of states; I and O are input and output alphabets; and h ⊆ S × I × O × S
is a behavior relation. The behavior relation defines all possible
transitions of the machine. Given a current state sj and input sym-
bol i, a 4-tuple (sj , i, o, sk) ∈ h represents a possible transition from
state sj under the input i to the next state sk with the output o.
A machine is called deterministic if for each pair (s, i) ∈ S × I there
exists at most one pair (o, s′) ∈ O × S such that (s, i, o, s′) ∈ h; other-
wise, the machine is called nondeterministic. If for each pair (s, i) ∈
S × I there exists (o, s′) ∈ O × S such that (s, i, o, s′) ∈ h then FSM S is
said to be complete; otherwise, the machine is called partial.  FSM S
is initialized if it has the designated initial state s1, also written S/s1.
Thus, an initialized FSM is a 5-tuple 〈S, I, O, h, s1〉. Given FSMs S = 〈S,
I, O, h, s1〉 and T = 〈T, I, O, g, t1〉,  FSM T is a submachine of S if T ⊆ S,
t1 = s1 and g ⊆ h. A complete nondeterministic FSM is observable if
at each state, the machine has at most one transition under a given
input/output pair, otherwise, it is non-observable. In the following,
we consider observable and complete FSMs if the contrary is not
explicitly stated.

As an example, consider the machine M in Fig. 1. The machine
is defined over the sets of inputs I = {a, b}, outputs O = {0, 1, 2}, and
states S = {1, 2, 3, 4, 5}, respectively. The machine is nondeterminis-
tic as for example, from state 2 under input a there are two  outgoing
transitions leading to states 2 and 3, respectively.

Given FSM S = 〈S, I, O, h〉, state s and an input i, the successor of
state s under the input i or simply the i-successor of state s contains

dx.doi.org/10.1016/j.asoc.2016.07.019


Download English Version:

https://daneshyari.com/en/article/4963627

Download Persian Version:

https://daneshyari.com/article/4963627

Daneshyari.com

https://daneshyari.com/en/article/4963627
https://daneshyari.com/article/4963627
https://daneshyari.com

