
Please cite this article in press as: O. Sahin, B. Akay, Comparisons of metaheuristic algorithms and fitness functions on software test
data generation, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.09.045

ARTICLE IN PRESSG Model
ASOC 3844 1–13

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Comparisons of metaheuristic algorithms and fitness functions on
software test data generation

Omur SahinQ1 , Bahriye Akay ∗

Erciyes University, The Department of Computer Engineering, 38039 Melikgazi, Kayseri, Turkey

a r t i c l e i n f o

Article history:
Received 29 December 2015
Received in revised form 21 July 2016
Accepted 26 September 2016
Available online xxx

Keywords:
Software testing
Test data generation
Artificial Bee Colony
Particle Swarm Optimization
Differential Evolution
Firefly algorithm
Approximation level
Branch distance
Path-based coverage
Similarity-based coverage

a b s t r a c t

Cost of testing activities is a major portion of the total cost of a software. In testing, generating test data
is very important because the efficiency of testing is highly dependent on the data used in this phase.
In search-based software testing, soft computing algorithms explore test data in order to maximize a
coverage metric which can be considered as an optimization problem. In this paper, we employed some
meta-heuristics (Artificial Bee Colony, Particle Swarm Optimization, Differential Evolution and Firefly
Algorithms) and Random Search algorithm to solve this optimization problem. First, the dependency of
the algorithms on the values of the control parameters was analyzed and suitable values for the control
parameters were recommended. Algorithms were compared based on various fitness functions (path-
based, dissimilarity-based and approximation level + branch distance) because the fitness function affects
the behaviour of the algorithms in the search space. Results showed that meta-heuristics can be effectively
used for hard problems and when the search space is large. Besides, approximation level + branch distance
based fitness function is generally a good fitness function that guides the algorithms accurately.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
Q2

Testing is an important phase in software production and soft-
ware life cycle because testing cost is mostly accounted for 50%
of the total development costs and releasing a reliable product is
mostly depended on the testing activities. Of all the testing activi-
ties, test case generation involves major portion of the labour since
it affects the efficiency of the whole software testing and then the
software produced [1]. As a software becomes more complicated,
software testing becomes more challenging [2]. In order to gener-
ate test data/case artifacts that make the testing more efficient and
robust, a large number of tools have been proposed and used in
the state-of-art for various programming languages, frameworks
and platforms [1]. Anand et al. [1] categorized the most prominent
techniques into five groups:

1. symbolic execution and program structural coverage testing
2. model-based test case generation
3. combinatorial testing

∗ Corresponding author.
E-mail addresses: omur@erciyes.edu.tr (O. Sahin), bahriye@erciyes.edu.tr

(B. Akay).

4. adaptive random testing
5. search-based testing

In search-based software testing (SBST), the main goal is to
explore effective test data that maximizes a coverage metric of a
software structure. Random testing [3] is a widely-used and low
cost approach in which test inputs are randomly picked from valid
ranges. However, its performance is poor when the inputs are sub-
jected to hard constraints. In SBST, some meta-heuristic search
techniques have been used for test case generation by formulat-
ing the problem as a combinatorial search problem. Harman and
Jones [4] claims that search-based software testing is an emerging
field and meta-heuristics are ideal to be applied software engineer-
ing by reformulating the classical software engineering problems.
While reformulating the problem, a fitness function is defined to
evaluate the quality of a solution in terms of a coverage metric. The
meta-heuristics do not make assumptions on the problem charac-
teristics and produce reasonable results for difficult problems that
cannot be solved by analytical approaches because of the prob-
lem dimensionality, the problem surface that has discontinuities
and noise. Search-based software test data generation methods are
reviewed by Harman and Jones [4], McMinn [5], Afzal et al., Räih”a
[6], McMinn [7], Harman et al. [8], and Harman et al. [9]. In all these
reviews, it is stated that there remain plenty of fields related with

http://dx.doi.org/10.1016/j.asoc.2016.09.045
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

dx.doi.org/10.1016/j.asoc.2016.09.045
dx.doi.org/10.1016/j.asoc.2016.09.045
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:omur@erciyes.edu.tr
mailto:bahriye@erciyes.edu.tr
dx.doi.org/10.1016/j.asoc.2016.09.045

Please cite this article in press as: O. Sahin, B. Akay, Comparisons of metaheuristic algorithms and fitness functions on software test
data generation, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.09.045

ARTICLE IN PRESSG Model
ASOC 3844 1–13

2 O. Sahin, B. Akay / Applied Soft Computing xxx (2016) xxx–xxx

search-based software engineering and many interesting research
challenges ahead.

There are some various meta-heuristic algorithms proposed
based on different natural phenomena. Particle Swarm Optimiza-
tion (PSO) algorithm [10], Differential Evolution (DE) [11], Artificial
Bee Colony (ABC) [12], Firefly algorithm (FA) [13] are some exam-
ples of most popular meta-heuristic algorithms.

PSO algorithm [10], introduced by Eberhart and Kennedy in
1995, is a swarm-based meta-heuristic that models the social
behaviour of bird flocking or fish schooling. DE algorithm [11]
proposed by Storn and Kennedy for numerical optimization prob-
lems is a population based algorithm using evolutionary operators;
crossover, mutation and selection. Artificial Bee Colony (ABC) algo-
rithm [12] developed in 2005 by Karaboga mimics the foraging
behaviour of honey bees and has been applied to many problems
encountered in different research areas [14–16]. FA [13] presented
by Yang based on the flashing and communication behaviour of
fireflies with flashes.

In recent years, some studies on PSO, DE, ABC and FA for
test data/case generation have been presented to the literature.
Windisch et al. [17] combined PSO and branch coverage criteria
to generate test data and conducted a comparison between PSO
and Genetic Algorithm (GA) on a benchmark set. Their results
showed that PSO outperformed GA in terms of effectiveness and
efficiency. Tiwari et al. [18] applied a variant of PSO in the cre-
ation of new test data for modified code in regression testing. They
reported that the proposed algorithm performed better in terms
of code coverage capability compared to other existing PSO algo-
rithms on five well known benchmark test functions. Zhu et al.
[19] proposed an improved PSO algorithm which uses adaptive
inertia weight. Results showed that proposed PSO algorithm had
better performance compared to immune genetic and basic PSO
algorithms. Dahiya et al. [20] proposed a hybrid pseudo dynamic
testing based on PSO to generate test data for C programs using
the all-path testing criterion. Experiments were carried out on
the structural testing problems such as dynamic variables, input
dependent array index, abstract function calls, infeasible paths and
loop handling. The technique was claimed to be robust and to
produce test inputs that are not redundant. Singla et al. [21] com-
bined GA and PSO algorithm to generate automatic test data for
data flow coverage with using dominance concept between two
nodes on a number of programs having different size and com-
plexity. It was stated that the performance of new technique is
superior to both GA and PSO. Latiu et al. [22] performed a com-
parison between GA, PSO and Simulated Annealing algorithms
that were integrated with the approximation level and branch
distance metrics. The results indicated that evolutionary testing
strategies are suitable to generate test data with a high coverage
amount.

Landa Becerra et al. [23] built a test data generator which
employed some DE variants and branch coverage metric for auto-
mated test data generation problem which can be formulated as a
constrained optimization problem. DE algorithm was compared to
the Breeder Genetic Algorithm and it was concluded that DE is a
promising solution technique for this real-world problem. Jianfeng
et al. [24] presented a DE-based combinatorial test data generator.
In the approach, a selection and substitution based on the degree
of unfinished interaction are employed to optimize the test case
selected in further. They compared the proposed approach with
Automatic Efficient Test Generator, Simulated Annealing, GA, Ant
Colony Optimization, Cross-Entropy and PSO algorithms and the
results showed the competitiveness of the proposed approach in
test suite size and running time. Liang et al. [25] proposed a DE algo-
rithm based on the one-test-at-a-time strategy for test case suite
generation. In the experiments, the effect of different mutations
and the influence of the control parameter values were analyzed. It

was concluded that the approach was effective and improved the
solution.

Mala et al. employed ABC algorithm for software test suite opti-
mization and compared ABC and GA in [26], and ABC and ACO in
[27]. Their fitness function was based on coverage-based test ade-
quacy criteria. They reported that the proposed approach had less
computation time, was more scalable and effective. In [28], they
parallelized the approach in order to reduce time overhead and
compared it to sequential ABC, GA and Random Testing. The results
indicated that the proposed ABC-based approach converged within
less number of test runs. Dahiya et al. [29] employed ABC with
branch distance-based objective function for automatic test data
generation in structural software tests and performed experiments
on ten real world problems with large-range input variables. It was
reported that the new technique was a reasonable alternative for
test data generation but the performance was deteriorated when
the inputs have large range and problem has many equality con-
straints. Lam et al. [30] presented a parallel ABC approach for the
automated generation of feasible independent test path based on
the priority of all edge coverage criteria to achieve the all test cov-
erage with less number of test runs. It was stated that the proposed
approach did not get stuck to local optima and path sequence com-
parison performed better than many fitness functions in literature.
Malhotra and Khari [2] proposed different variants of ABC algo-
rithm which utilizes mutation function of GA, in onlooker and scout
bee phases in order to further improve the global search capability
of the basic ABC algorithm. The proposed approach was evaluated
on 10 C++ programs and it was shown that ABC algorithm with
mutation produced better results in less time. Malhotra et al. [31]
applied ABC, ant colony and GA algorithm based on path coverage
metric and the experiments were validated on 9 C++ programs. It
was concluded that ABC was the efficient due to the incorporation
of parallelism and its neighbourhood production mechanism. Suri
and Kaur [32] applied ABC algorithm as a regression test data gen-
erator to find the affected portions in a program and to achieve
maximum path coverage. New test cases are generated until 100%
coverage is achieved. Experiments were repeated for eight exam-
ples and the proposed approach was shown to be able to detect the
paths that had been affected by changes and achieved 100% path
coverage.

Srivatsava et al. [33] optimized test case paths using FA based on
appropriate objective function and introducing guidance matrix in
traversing the graph. Their objective function employed cyclomatic
complexity and random function. Graph reduction and state-based
transformation ensured the right code coverage for testing. It was
shown that FA produced the optimal paths and could minimize the
test efforts.

One purpose of this paper is to investigate the search abilities of
PSO, DE, ABC, FA and Random Search algorithms on software test
data generation benchmark problems including the triangle classi-
fier, quadratic equation, even-odd, largest number, remainder, leap
year, division of mark problems. PSO, DE, ABC and FA algorithms are
simple and practical to implement compared to many other search
heuristics. Especially ABC algorithm has little number of control
parameters to be tuned. In most of the studies given above, there
is no experiment on the control parameter sensitivity. Because
the algorithm dependent parameters have critical impact on the
local and global search abilities of the algorithms; they are directly
related to the efficiency and efficacy. In this study, we conducted a
comprehensive parametric analysis by setting different values for
control parameters of PSO, DE, ABC and FA and suggested values
for control parameters that yield generally good performance.

Besides, in the experiments, designing a fitness function is
another key issue that should be decided [4]. Tailoring a good
fitness function helps the algorithm to track the optima in the
search space more accurately and quickly. In SBST tools based

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

dx.doi.org/10.1016/j.asoc.2016.09.045

Download English Version:

https://daneshyari.com/en/article/4963629

Download Persian Version:

https://daneshyari.com/article/4963629

Daneshyari.com

https://daneshyari.com/en/article/4963629
https://daneshyari.com/article/4963629
https://daneshyari.com

