
Please cite this article in press as: O. Yazdanbakhsh, et al., On deterministic chaos in software reliability growth models, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.006

ARTICLE IN PRESSG Model
ASOC 3748 1–14

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

On deterministic chaos in software reliability growth models

O. YazdanbakhshQ1 , S. Dick (Dr.) (Associate Professor) ∗, I. Reay, E. Mace
Dept. of Electrical & Computer Engineering, University of Alberta, Edmonton, AB, Canada

a r t i c l e i n f o

Article history:
Received 1 December 2015
Received in revised form 31 May 2016
Accepted 2 August 2016
Available online xxx

Keywords:
Software reliability
Chaos theory
Time series analysis
Machine learning
Forecasting

a b s t r a c t

Software reliability growth models attempt to forecast the future reliability of a software system, based
on observations of the historical occurrences of failures. This allows management to estimate the failure
rate of the system in field use, and to set release criteria based on these forecasts. However, the current
software reliability growth models have never proven to be accurate enough for widespread industry
use. One possible reason is that the model forms themselves may not accurately capture the underlying
process of fault injection in software; it has been suggested that fault injection is better modeled as a
chaotic process rather than a random one. This possibility, while intriguing, has not yet been evaluated
in large-scale, modern software reliability growth datasets.

We report on an analysis of four software reliability growth datasets, including ones drawn from the
Android and Mozilla open-source software communities. These are the four largest software reliability
growth datasets we are aware of in the public domain, ranging from 1200 to over 86,000 entries. We
employ the methods of nonlinear time series analysis to test for chaotic behavior in these time series; we
find that three of the four do show evidence of such behavior (specifically, a multifractal attractor). Finally,
we compare a deterministic time series forecasting algorithm against a statistical one on both datasets,
to evaluate whether exploiting the apparent chaotic behavior might lead to more accurate reliability
forecasts.

© 2016 Published by Elsevier B.V.

1. Introduction

The smartphone revolution has embedded software into the
daily lives and routines of hundreds of millions of ordinary peo-
ple. We text and message instantly with friends and acquaintances
across the street or across the country. We pull out our phones to
search for information at the drop of a hat. Our schedules, emails,
and contact lists are literally at our fingertips. Software monitors
and controls all major industrial plants, the power grid, sewer and
water systems, and public transportation. Government documents
are now posted in official online repositories for all citizens to view.
News articles, streaming media, online games, etc. pour nearly a
zettabyte of data across the Internet each year [80]. Software is
intimately woven through every aspect of our lives, and so soft-
ware failures pose an immediate and critical danger to life, limb
and property. It is thus disconcerting that software is more failure-
prone than any other engineered product [33]. Software failures
likely cost the U.S. economy over $78 billion per year [40]. Improv-

∗ Corresponding author.
E-mail address: dick@ece.ualberta.ca (S. Dick).

ing the reliability of software systems is thus one of the most crucial
technical challenges of the 21st century. Q3

While software quality is generally poor, this is not merely a case
of shoddy work, but a testament to the sheer intellectual difficulty
of developing large software systems. With codebases stretching
to hundreds of millions of lines long, and more than 102̂0 possi-
ble states, software systems are by orders of magnitude the most
complex creations mankind has ever attempted to build [20]. By
way of comparison, the human brain contains on the order of 60
trillion connections between neurons [73]; thus, it is reasonable to
say that software developers are trying to build something orders
of magnitude more complex than their own brains. In the face
of this complexity, defect-free software is an unachievable goal;
instead, we must ensure that the number and severity of the defects
remaining when a product is shipped are acceptably low. It does
not matter if a few pixels on an in-car entertainment display are
the wrong colour; it matters a great deal if the navigation system
directs drivers over a cliff.

Software quality assurance almost uniformly follows the
develop-and-test paradigm. Code is written, and then its behav-
ior is compared to its specification by executing a number of inputs
that should result in known outputs. If the actual and expected out-
puts match, that test passes; if not, a bug has been found and must
be fixed. Thus, the main question for project managers is how to

http://dx.doi.org/10.1016/j.asoc.2016.08.006
1568-4946/© 2016 Published by Elsevier B.V.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

dx.doi.org/10.1016/j.asoc.2016.08.006
dx.doi.org/10.1016/j.asoc.2016.08.006
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:dick@ece.ualberta.ca
dx.doi.org/10.1016/j.asoc.2016.08.006

Please cite this article in press as: O. Yazdanbakhsh, et al., On deterministic chaos in software reliability growth models, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.08.006

ARTICLE IN PRESSG Model
ASOC 3748 1–14

2 O. Yazdanbakhsh et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 1. Failure Rates over Time [41].

determine how much testing is enough for the software to reach
an acceptable level of quality. From a management perspective,
this means that the expected future cost of maintenance and lia-
bility (responding to failures in the field) is acceptably low. When
the software reaches this point, it is ready to be released. Ideally,
organizations should use the development and testing history of
the software system to decide when the release point has been
reached. Heuristic criteria that are commonly used include requir-
ing that the number of open minor and moderate bugs be below
some threshold, that no serious or safety-critical issues are open,
that the rate at which bugs are discovered and their severity are
both clearly decreasing, etc. [11]. A more optimal approach would
set a threshold of expected future costs below which the software
may be released. In order to do this, the probability of a failure in
the field over time needs to be estimated; in other words, the future
reliability of the system must be forecast. In reliability engineering,
this forecast is produced by a reliability growth model [41].

Reliability growth models for physical systems are substantially
different from those for non-physical systems such as software. In a
physical system, failure rates over time generally follow the “bath-
tub curve” depicted in Fig. 1. After an initial period of high failure
rates due to residual design defects (the “infant mortality” stage),
the system reaches regular operation, during which time failures
are generally due to random external events (hence a constant, low
rate of failures). As the system’s components wear out, the failure
rate again increases, until the system reaches its end of life [41]. The
key difference for software is that physical systems are subject to
wear and random defects in material components. By contrast, all
software failures are due to residual design defects; in a very real
sense, software never exits the infant mortality stage. Thus, instead
of the exponential-class models often used for hardware reliability
(e.g. the Weibull distribution [41]) counting models such as Non-
Homogenous Poisson Processes (NHPPs) are frequently used for
Software Reliability Growth Models (SRGMs), e.g. [53,70].

There has recently been interest in a different class of SRGMs,
based on the notion that fault injection in software is a chaotic pro-
cess, rather than a random one. Studies in [12,95] and others have
examined SRGM datasets, and found signatures of chaotic behavior
in them (chiefly by treating the SRGM dataset as a time series from a
dynamic system, and determining a fractal dimension for the state-
space attactor). The hypothesis of chaotic behavior is intriguing, but
the studies above share a common weakness: publicly-available
software reliability growth datasets are small, usually consisting
of only a few hundred observations. There may be thousands of
failures tracked by these datasets, but they have usually been sum-
marized into counts of failures per time interval. The resulting
time series are now usually considered too small to reliably test
for chaotic behavior (although a recent advance allowing model-
ing of even short chaotic time series is reported in [71]). What
is needed for a definitive test of the chaotic hypothesis are large
SRGM datasets drawn from modern large-scale software systems.
This preserves the fine-grained structure of the data, and provides

enough data for a reliable test. [12] performed their analysis on the
largest inter-failure time datasets that were then available, which
contained no more than 2000 observations (the Musa dataset [46] is
an inter-failure dataset, but only contains 136 observations). This is
barely adequate for testing for the simplest form of chaotic behav-
ior (i.e. a monofractal state space attractor); an order of magnitude
more data will be needed to reliably test for multifractal behavior.
A further necessary test of the chaotic hypothesis is to determine if
it leads to a superior model than random behavior. In our view, this
means comparing nonlinear deterministic models against proba-
bilistic ones in a forecasting experiment.

Our goal in the current paper is to employ four large-scale soft-
ware reliability datasets to test for chaotic behavior, and compare
probabilistic and deterministic forecasting algorithms on these
datasets. We introduce two new SRGM interfailure time datasets,
one derived from bug reports and change records for the Android
open-source operating system (this is the 2012 MSR Challenge
dataset1), and a second from the defect-tracking database for
the Mozilla open-source Web browser. The Android dataset is an
order of magnitude larger than any existing SRGM dataset, at over
20,000 observations; the Mozilla dataset contains more than 86,000
entries. We test for chaotic behavior in these datasets, as well as
the two datasets from [12] by estimating the fractal dimension of
the underlying attractor. We furthermore compute the multifrac-
tal spectrum of these datasets, an analysis which has not previously
been attempted. We find that both new datasets, as well as one of
the datasets used in [12], have multifractal attractors and are thus
chaotic; we discuss how this complex geometry may have arisen in
the context of normal software engineering practice. In forecasting
experiments, we find that all three datasets also exhibit long-range
dependencies, and that fractional ARIMA models and radial basis
function networks are equally effective in forecasting them.

Our contributions to the literature are as follows: 1) we develop
and analyze two new SRGM datasets, which are an order of magni-
tude larger than any currently available in the public domain; 2) we
determine that the state-space attractors for both of these datasets,
as well as an existing one, have a multifractal geometry; 3) we show
that stochastic (fractional ARIMA) and deterministic (radial basis
function network) models are equally effective in modeling these
datasets.

The remainder of this paper is organized as follows. In Section
2, we review essential background and related work, ultimately
developing our research hypotheses. We describe our methodology
in Section 3, and discuss the creation of our datasets and our initial
processing of them in Section 4. We present our extraction of fractal
dimensions and multifractal spectra in Section 5, and our predictive
modeling experiments in Section 6. We discuss and interpret the
totality of our results in Section 7, and close with a summary and
discussion of future work in Section 8.

2. Related work

The earliest bespoke SRGMs were the Jelinski-Moranda de-
eutrophication model [32], and Schneidewind’s Non-Homogenous
Poisson Process (NHPP) model [70]. Musa’s basic execution model
[52], the Yamada S-shaped model [89] and Musa & Okumoto’s log-
arithmic Poisson model [53] were developed a decade later. All of
these models are variations on the NHPP concept, which is a Poisson
process whose mean value is time-varying:

P
{
N (t) = k

}
= (m(t))k

k!
e−m(t) (1)

1 http://2012.msrconf.org/challenge.php.

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

dx.doi.org/10.1016/j.asoc.2016.08.006
http://2012.msrconf.org/challenge.php
http://2012.msrconf.org/challenge.php
http://2012.msrconf.org/challenge.php
http://2012.msrconf.org/challenge.php
http://2012.msrconf.org/challenge.php
http://2012.msrconf.org/challenge.php

Download English Version:

https://daneshyari.com/en/article/4963633

Download Persian Version:

https://daneshyari.com/article/4963633

Daneshyari.com

https://daneshyari.com/en/article/4963633
https://daneshyari.com/article/4963633
https://daneshyari.com

