
Please cite this article in press as: T. Ayav, H. Sözer, Identifying critical architectural components with spectral analysis of fault trees,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Identifying critical architectural components with spectral analysis
of fault trees

Tolga Ayava,∗Q1 , Hasan Sözerb

a Izmir Institute of Technology, İzmir, Turkey
b Ozyegin University, İstanbul, Turkey

a r t i c l e i n f o

Article history:
Received 10 December 2015
Received in revised form 22 June 2016
Accepted 30 June 2016
Available online xxx

Keywords:
Hardware/software architecture evaluation
Reliability analysis
Fault trees
Fourier analysis
Sensitivity analysis
Importance analysis

a b s t r a c t

We increasingly rely on software-intensive embedded systems. Increasing size and complexity of these
hardware/software systems makes it necessary to evaluate reliability at the system architecture level.
One aspect of this evaluation is sensitivity analysis, which aims at identifying critical components of the
architecture. These are the components of which unreliability contributes the most to the unreliability of
the system. In this paper, we propose a novel approach for sensitivity analysis based on spectral analysis of
fault trees. We show that measures obtained with our approach are both consistent and complementary
with respect to the recognized metrics in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We increasingly rely on software-intensive systems such asQ2
modern embedded systems employed in telecommunication, con-
sumer electronics, automotive, avionics and health application
domains. Software plays a central role in defining the functionality
and the quality for these systems. As a result, both hardware and
software faults constitute a threat for system reliability. This threat
gets amplified as systems continue to grow in size and complexity.

For a long period, software reliability has been basically
addressed at the source code level. However, the increasing size and
complexity required a special focus on higher abstraction levels as
well. In particular, early reliability evaluation at the software archi-
tecture design level became essential [1,2]. Software architecture
represents the gross level structure of the system, consisting of a set
of components, connectors and configurations [3,4]. This structure
has a significant impact on the reliability of the system [5]. Hence,
it is important to evaluate software architecture with respect to
reliability risks [6]. By this way, the quality of the system can be
assessed early to avoid costly redesigns and reimplementations.

In the case of software-intensive embedded systems, both
hardware and software faults have to be taken into account. To

∗ Corresponding author at: Computer Engineering Department, Izmir Institute of
Technology, Urla, 35430 İzmir, Turkey. Tel.: +90 232 750 7878.

E-mail address: tolgaayav@iyte.edu.tr (T. Ayav).

analyze the propagation and interaction of these faults, system
level abstract models have been developed. These models include
state/path-based models [5,7,8] and (dynamic) fault trees [9,10]. In
this work, we employ fault tree models, which depict logical inter-
relationships among faults that cause a system failure. They have
been integrated as part of AADL (Architecture Analysis and Design
Language) [11]. There also exist tools for synthesizing them auto-
matically based on UML models [12]. Fault trees can be used for
estimating the reliability of the overall system based on individual
component failures. Another goal is to estimate the sensitivity of
system reliability with respect to reliabilities of system components
[5,13,14]. This goal is achieved with so-called sensitivity analysis
[15] or importance analysis [16,17] to identify critical components
[18]. These are the components of which unreliability contributes
the most to the unreliability of the system.

An established measure for sensitivity/importance was
introduced by Birnbaum [19], which is basically defined as
the partial derivative of the system reliability with respect to
the corresponding component reliability. Hereby, the system
reliability is defined as a function of reliabilities of the involved
components. There have also been other measures introduced for
assessing component importance; however, it was later observed
that they provide counterintuitive or inconsistent results [16,20].

In this paper, we propose a novel approach for sensitivity anal-
ysis. The approach is based on the spectral analysis of Boolean
functions. Spectral (or Fourier) analysis is widely used in math-
ematics and engineering for decomposing a signal into a sum

http://dx.doi.org/10.1016/j.asoc.2016.06.042
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

dx.doi.org/10.1016/j.asoc.2016.06.042
dx.doi.org/10.1016/j.asoc.2016.06.042
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:tolgaayav@iyte.edu.tr
dx.doi.org/10.1016/j.asoc.2016.06.042

Please cite this article in press as: T. Ayav, H. Sözer, Identifying critical architectural components with spectral analysis of fault trees,
Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.06.042

ARTICLE IN PRESSG Model
ASOC 3679 1–13

2 T. Ayav, H. Sözer / Applied Soft Computing xxx (2016) xxx–xxx

of periodic functions. Representing a function as a sum of sim-
pler functions allows for a sort of probabilistic reasoning about
the various parameters of the system. In our approach, we use
fault tree models as input, which are commonly used for sensi-
tivity/importance analysis [2,13,14,16,18,21]. We apply spectral
analysis on these models to identify critical components of the
architecture. We evaluate our approach based on a benchmark
fault tree model and two additional subject models derived from
a software architecture description of a Pick and Place Unit (PPU)
of a factory automation system [22]. We show that the measures
obtained with our approach are both consistent and comple-
mentary with respect to the recognized metrics in the literature.
Moreover, to the best of our knowledge, this is the first study that
applies spectral analysis methods to the evaluation of fault trees.

The remainder of this paper is organized as follows. In the fol-
lowing two sections, we provide background information on fault
tree analysis and spectral analysis. In Section 4, we introduce our
approach for sensitivity analysis. In Section 5, we present an eval-
uation of our approach. In Section 6, we discuss the results and
limitations. In Section 7, we summarize the related studies. Finally,
in Section 8, we conclude the paper.

2. Fault tree analysis

A fault tree is a graphical model, which defines causal relation-
ships among faults leading to a system failure. An example fault
tree model is depicted in Fig. 1. Hereby, the top node (i.e., root)
or the top event of the tree represents the system failure. The leaf
nodes of the tree (labeled as a, b, and c in Fig. 1) are named as
basic events. In our modeling approach, each basic event represents
a failure of an individual component of the software architecture.
We can also see an intermediate event in Fig. 1. Such events rep-
resent undesirable system states that can lead to a system failure.
Logical connectors, which interconnect the set of events, infer the
propagation and contribution of these events to other events and
eventually to the system failure. For example, we can see in Fig. 1
that basic events b and c are connected with an AND-gate (depicted

with symbol), which in turn is connected to the intermediate
event. This means that the intermediate event occurs if both b and
c occur. This can be the case, for instance, if these basic events rep-
resent the failures of functionally equivalent software components
employed for N-version programming [21]. Another basic event,
a is connected with the intermediate event through an OR-gate

(depicted with symbol), which in turn is connected to the top
event. This means that the top event occurs if one or both of a and
the intermediate event occur. This can be the case, for instance, if
a represents the failure of a (critical) component, of which failure
directly leads to the system failure regardless of the states of other
components.

Fig. 1. An example fault tree model.

Occurrence of a set of k events can be represented as a vector
of Boolean variables, x = [x0, x1, . . ., xk−1], of length k. Hereby, xi = T
and xi = F indicate the existence and absence of event i, respectively.
Boolean variables and operations are noted and defined as follows:

x:=F |T |x′|x1�x2, where � = {∧ , ∨}.
An AND-gate represents the intersection of the events attached

to the gate. All events must exist for the output event of the gate to
occur. For k input events, the equivalent Boolean expression would
be

fAND(x) = x0 ∧ x1 ∧ x1 ∧ · · · ∧ xk−1

Let p0, . . ., pk−1 denote the probabilities of the input events. Under
the assumption that these events are independent, the probability
of the output event can be defined as

p =
k−1∏
i=0

pi (1)

Similarly, an OR-gate represents the union of the input events.
There must exist at least one input event for the output event to
occur. The equivalent Boolean expression is

fOR(x) = x0 ∨ x1 ∨ x1 ∨ · · · ∨ xk−1

The probability of the output event can be written as

p = 1 −
k−1∏
i=0

(1 − pi) (2)

Let us assume that n different potential failures are identified
for a given software architecture. These failures are considered as
basic events. Then, a vector of Boolean variables, x = [x0, x1, . . .,
xn−1] can represent the occurrence of these events. So, xi = T and
xi = F indicate the existence and absence of failure i, respectively.
The occurrence of the top event can be represented as a Boolean
function of x, f(x), where f(x) = T and f(x) = F indicate the failure and
the correct functioning of the overall system, respectively. For the
example fault tree model depicted in Fig. 1, this function can be
defined as f(x) = a ∨ b ∧ c.

Note that in reliability engineering, failure probabilities depend
on time, i.e. they are expressed as p(t), t ∈ [0, T] where T is the
mission time and they are assumed to be generated from a failure
distribution. Therefore all equations depending on the probabilities
are also time dependent. For the sake of clarity, we prefer to use a
simpler notation throughout the paper by simply omitting the time
dependency. This means that all equations presented in this study
are applicable to any time t ∈ [0, T].

2.1. Coherent and non-coherent systems

Fault tree analysis techniques commonly assume that the ana-
lyzed system is a coherent system, which is defined as follows:

Definition 1 (Coherent system). Given a system with n possible
component failures, and its fault tree, where the occurrence of the
top event is defined by f : Bn → B, the system is said to be coherent
iff:

1. (Relevancy) Infi > 0 : ∀ i ∈ {0, 1, 2, . . ., n − 1},
2. (Monotonicity) f(x) ≥ f(y) whenever x ≥ y pointwise.

The first requirement states that each component must have an
influence on whether or not the system works. Second, f(x) is
required to be monotone, i.e., a non-decreasing function. In other
words, fixing a component cannot make the system worse. Note

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121
122

123

124

125

126
127

128

129

130

131

132

133

134
135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

dx.doi.org/10.1016/j.asoc.2016.06.042

Download English Version:

https://daneshyari.com/en/article/4963634

Download Persian Version:

https://daneshyari.com/article/4963634

Daneshyari.com

https://daneshyari.com/en/article/4963634
https://daneshyari.com/article/4963634
https://daneshyari.com

