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a  b  s  t  r  a  c  t

We  set  two  objectives  for this  study:  one  is to emulate  chaotic  natural  populations  in  GA (Genetic  Algo-
rithms)  populations  by utilizing  the  Logistic  Chaos  map  model,  and  the  other  is to  analyze  the  population
fitness  distribution  by  utilizing  insect  spatial  distribution  theory.  Natural  populations  are  so  dynamic  that
one  of  the  first experimental  evidences  of  Chaos  in  nature  was discovered  by a  theoretical  ecologist,  May
(1976, Nature,  261,459–467)[30],  in  his analysis  of  insect  population  dynamics.  In  evolutionary  comput-
ing,  perhaps  influenced  by  the  stable  or infinite  population  concepts  in  population  genetics,  the  status
quo  of  population  settings  has  dominantly  been  the  fixed-size  populations.  In  this  paper,  we  propose  to
introduce  dynamic  populations  controlled  by  the  Logistic  Chaos  map  model  to  Genetic  Algorithms  (GA),
and test  the  hypothesis  –  whether  or  not  the  dynamic  populations  that  emulate  chaotic  populations  in
nature  will  have  an  advantage  over  traditional  fixed-size  populations.

The Logistic  Chaos  map  model,  arguably  the simplest  nonlinear  dynamics  model,  has  surprisingly  rich
dynamic  behaviors,  ranging  from  exponential,  sigmoid  growth,  periodic  oscillations,  and  aperiodic  oscil-
lations,  to  complete  Chaos.  What  is  even  more  favorable  is that,  unlike  many  other  population  dynamics
models,  this  model  can  be expressed  as  a  single  parameter  recursion  equation,  which  makes  it  very con-
venient  to  control  the  dynamic  behaviors  and  therefore  easy  to apply  to evolutionary  computing.  The
experiments  show  result  values  in terms  of  the  fitness  evaluations  and  memory  storage  requirements.
We  further  conjecture  that  Chaos  may  be  helpful  in  breaking  neutral  space  in  the  fitness  landscape,  sim-
ilar to the  argument  in  ecology  that  Chaos  may  help  the  exploration  and/or  exploitation  of  environment
heterogeneity  and  therefore  enhance  a species’  survival  or fitness.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Background

In almost every major field of evolutionary computing, popu-
lation size is one of the parameters that a researcher has to deal
with. In nature, natural selection as the driving force of evolution
acts upon populations, and in computing science, group search is
arguably the unique feature of evolutionary computing. Therefore,
it was no surprise that the pioneers of evolutionary computing,
such as De Jong [6] and Holland [15], and a little bit later by Baker
[4], Goldberg [10], etc. had already studied the population sizing
from the very beginning of evolutionary computing. What is per-
haps surprising is that more than three decades later, we still largely
depend on the experience or ad-hoc trial-and-error approach to
set the population size. In their recent monograph for evolutionary
computing, Eiben and Smith [8] indicated: “In almost all EC appli-
cations, the population size is constant and does not change during
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the evolutionary search”. Does the status quo imply that population
size is not an important parameter?

The answer to the previous question seems a definite no. Cur-
rent practice of manual setting of population size in evolutionary
computation is experience-based, but not robust. Too small of
populations can lead to premature convergence, and too big of pop-
ulations can be computationally costly. In particular, in Genetic
Programming (GP), big population is often a culprit for the too
early occurrence of code bloat, which may  cause computation fail-
ure or even crash the system. This manual setting by experienced
programmers is acceptable for design modeling or ad-hoc appli-
cations; it is problematic for real-time applications, which require
high predictability and robustness. In the latter scenarios, auto-
matic, adaptive and robust population sizing (also other parameters
such as mutation and crossover rates) is necessary. On the practical
side, what is equally important is the robustness and adaptabil-
ity of the algorithms. Furthermore, many of the problems we face
are NP-hard problems; efficient population sizing may have signif-
icant impacts on the success of the heuristic algorithms. However,
an optimal population size effective in exploring fitness space
and efficient in utilizing computing resources is theoretically very
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intriguing. Achieving the balance in effectiveness and efficiency is
such a dilemma that prompted Harik et al.’s [14] approach to the
problem with a gambler’s ruin random walk model, one of the most
rigorous analyses of the population size problem.

Rylander [33] reviewed the population size issues in GA and
stated: “There has yet to be a proven or even generally accepted
optimum population size for all problems. Since earlier work indi-
cated that no single optimum existed, there has been little recent
work attempting to determine such an optimum. The most notable
tradeoffs are as follows: the larger the population the more quickly
a solution space can be explored, the smaller the population the
more quickly it can converge to optimum once it is found. Unfor-
tunately, there is no agreement as to how large the large is or
conversely how small the small is.”

Early pioneering studies of population sizing are largely ad-hoc,
problem-oriented and empirical. Many of the studies were simple
sample comparisons of multiple population sizes or were com-
pared with De Jong [6] research (e.g., Grefenstette [43], Schaffer
[34], Gates et al. [9],  Odetayo [32], Yuen and Ma  [42], Costa et al.
[5]). Goldberg instead analyzed the optimal population size the-
oretically, and found that the optimal population size increases
exponentially and is rather large for even moderate chromosome
size [10]. Goldberg was also the first to study the relationship
between fitness variance and population size, and later derived a
conservative bound for the convergence quality of the Gas [11].
Goldberg et al. further analyzed population-sizing based on recom-
binative mixing, disruption, deception, population diversity, and
selective pressure [13]. As argued by Alander, the results seem
rather pessimistic [2].  Alander cited Goldberg’s own assessment
on his theoretical analysis: “too few empirical studies have been
performed to know whether the theory provides quantitatively
accurate predictions” [2].

Alander [2] reasoned from linear algebra that to cover each point
of a given n dimensional space, at least n base vectors are needed.
Alander further argued that for small values of n, the optimal pop-
ulation size may  be approximately equal to n. Alander [2] also
mentioned that in nature, large populations are more stable and
resistant to evolution than small populations that may  be founded
by a few colonists, or the “founder effect”. Although the founder
effect implies that the population is small initially, and it may  not
tell much information about the population changes in later stages.
In fact, the Chaos population model implies that initial population
size has little values in predicting population dynamics because
the extreme sensitivity to initial population size is a signature of
chaotic populations. Alander [2] also attempted to correlate popu-
lation size with problem complexity, but the characterization was
solely dependent on the experiment curves and contained no bio-
logical/algorithmic arguments. Arabas et al. [3] pointed out that
there are two important issues in the genetic search: population
diversity and selective pressure, both of which are strongly related
to each other. Both are also influenced by population sizes. It is
important to achieve a balance between diversity and selective
pressure. Arabas et al. [3] introduced the concept of “age” of a chro-
mosome, which is equivalent to the number of generations the
chromosome stays “alive”. The age of the chromosome replaces
the concept of selection. Their experiments showed that to achieve
high fitness, a large population has to be maintained. Arabas et al.
[3] concluded that while the variable population seemed favorable
over the fixed population, the major problem of determining the
lifetime parameter remained unresolved.

Dynamic population sizing in multi-objective evolutionary algo-
rithms (MOEA) is considered an open problem (Khor et al. [17]).
Khor et al. [17] approached the dynamic size for MOEA with
the following intuitive concept: in an m-dimensional objective
space, assuming that the desired population size at generation n
is, dps(n), and the population density per unit volume is ppv, the

approximated trade-off hyper-area A(n) discovered by the
population at generation n can be defined as, lowbps ≤ dps
(n) = ppv*A(n) ≤ upbps,  where lowbps and upbps are the lower and
upper bounds for the dps (n). They developed a formula for comput-
ing A(n) based on the average of the longest and shortest diameters
of the hyper-area (Tan et al. [36,37]). Lu and Yen [19] pointed out
that the estimation of dps (n) by previous authors is a heuristic
approximation and its robustness has to be tested with various
initial population sizes, and in some occasions may lead to pre-
mature convergence. They proposed an alternative approach in
which a multi-objective optimization problem is converted into
a bi-objective optimization problem in terms of individual’s rank
and density values (Lu and Yen [19,20]).

Ma  and Krings [26] compared simple dynamic populations (such
as random, increasing, decreasing, bell-shaped, or inverse bell-
shaped fluctuating schemes) with the fixed-size populations and
found that the dynamic populations outperform the fixed-size pop-
ulations and the results consistently outperformed the fixed-size
populations with the same average population size. There was
not any mathematical model used in that simple dynamic pop-
ulation, and the five schemes were somewhat more similar to
fine-tuned static populations, although the term “dynamic popula-
tion” was used. For example, the “decreasing population” scheme
was adopted to perform more intensive exploration in the early
stage of GA. In this study, we  greatly expand the simple dynamic
population schemes with the mathematical models derived from
modeling of the natural populations. Ma  [27] briefly reviewed bio-
logical/ecological principles and models that can be inspirational
for developing a unified population dynamics theory in evolution-
ary computing.

In stochastic approach, Harik et al.’s [14] “gambler’s ruin” for-
mulation, as well as the further follow-up study by Ahn and
Ramakrishna’s [44] seem to be among the most rigorous analytic
approaches to the population-sizing problem. Despite this excel-
lent analytic exploration, it appears that further relaxation of the
assumptions used in the studies is needed to apply the results in
GA practice. However, further relaxation of the assumptions may
easily lead to stochastic problems that are intractable analytically.

In summary, it appears that one of the earliest consensuses is
that relative small population size in the magnitude of chromosome
length is a feasible choice (e.g., De Jong [6],  Schaffer [34], Alan-
der [2],  Goldberg [10]), but later studies found that population size
should exponentially increase with chromosome (string) size (e.g.,
Goldberg [10,12], Gates [9]). This latter conclusion paints a very
pessimistic picture about the efforts of obtaining optimum pop-
ulation size. It might partially explain why three decades after De
Jong’s [6] and Holland’s [15] first examination of the issue, the fixed-
sized populations are still dominantly used in practice as indicated
by Eiben and Smith [8],  despite the extreme significance of this
parameter. Rigorous analysis with random walk model by Harik
et al. [14], Ahn and Ramakrishna [44] brought fresh insights to the
field; however, the problem is still far from solved.

2. Ecological theory: population dynamics and Logistic
Chaos map  model

2.1. Population dynamics

Population dynamics or the spatial-temporal change of the pop-
ulation size or density is the central topic of population ecology.
The mathematical modeling of population dynamics can be traced
back to Thomas Malthus’s (1798) “An Essay on the Principle of
Populations” (cited in Kot [18]), in which Malthus proposed now
well-known Malthusian population growth model [Eq. (2) below].
It is well documented that Malthus’ work had significant influence
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