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a  b  s  t  r  a  c  t

The  mutant  and  uncertain  behaviour  of insurance  environments  does  not  make  advisable  to  use  a  wide
data-base  when  calculating  claim  reserves  and  so, quantifying  provisions  with fuzzy  numbers  becomes
suitable.  This  paper  firstly  describes  the  fuzzy  least  squares  regression  that will  be  used  in  posterior
developments.  Subsequently  we  expose  a claim  reserving  method  that combines  fuzzy  regression  with
the classical  statistical  scheme  based  on  two ways  of  ANOVA.  Finally  we  develop  a  numerical  application
where  we  show  in detail  how  to use  our method  to  fit  expected  claiming  costs  and  their variability  and
compare  its results  with  those  from  conventional  ANOVA  two  ways.
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1. Introduction

It is not advisable to use a wide data-base to calculate claim
reserves. In [24] it is pointed out that data too far from the present
can lead to unrealistic estimates. For example, if claims are related
to bodily injuries, the future losses for the company will depend
on the growth of the wage index (which will be used to determine
the amount of indemnification due), changes in court practices and
public awareness of liability matters. In the actuarial field, Fuzzy
Sets Theory (FST) has been used to model situations that require
a great deal of actuarial subjective judgement and problems for
which the information available is scarce or vague. A panoramic
review about FST applications in Actuarial Science can be consulted
in [22].

We think that one of the most interesting areas of FST for actuar-
ies is Fuzzy Data Analysis (FDA). As Statistics, FST provides several
techniques for searching and ordering the information contained in
empirical data (e.g. for grouping elements, to find relations between
variables, etc.). Within an actuarial context, FDA has been used
in several areas. Horgby et al. in [10] use FDA for underwriting
and reinsurance decisions, whereas [6,9,32] propose using FDA
for ratemaking and risk clustering. Likewise, [1,13,14,28] adjust
functions of actuarial interest with FST techniques. Specifically,
[28] uses Fuzzy Mathematical Programming to fit the coefficient
of dependence in the Fearlie–Gumbel–Morgenstein distribution
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function. Refs. [1,14] use two  different fuzzy regression (FR) meth-
ods to fit the temporal structure of interest rates whereas [13]
develops a FR methodology to forecast mortality with a Lee–Carter
model. The present paper proposes a claim reserving method that
mixes FR with the methodology developed by Kremer [15], which
has been used intensively in actuarial literature (see [5,20] among
others).

Determining the variability of claim provisions is as important as
obtaining their fair value. This fact motivated the rise of stochastic
reserving methods back in the mid  1970s. These are more complete
and sophisticated than classical reserving methods (see [11] for
a wide survey) because they provide not only a mean value for
the reserves but also an estimate of their uncertainty (usually by
means of the standard deviation). Given that the central hypothesis
of these methods is that the evolution of claims is random, an ideal
method must determine the value of claim provisions as a random
variable completely described by its distribution function. Thus, we
propose a method that calculates the expected value of reserves
following [15] but, on the other hand, we  estimate the variability
of reserves using fuzzy numbers (FNs) instead of random variables.

In our opinion, FR has another advantage over traditional tech-
niques. The predictions obtained after the coefficients have been
adjusted are not random variables, which are difficult to use in
arithmetical operations, but are FNs, which are easier to handle
arithmetically. So, when starting from magnitudes estimated by
random variables (e.g. which have been predicted by a statisti-
cal regression) these random variables are often reduced to their
mathematical expectation so that they are easier to handle. If FNs
are used, this loose of information is not needed since arithmetical
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operations with FNs are easy to compute. We  think that the reasons
mentioned above explain why papers such as [8,16,18,19,33–36]
suggest using FR to analyse several economic problems.

The structure of the paper is as follows. In the next section we
shall describe the aspects of fuzzy arithmetic and Ishibuchi and Nii’s
extension [12] of the FR methods described in [21,25,26].  Section 3
develops our claim reserving method. We  then show a numerical
application. Finally, we state the most important conclusions of the
paper.

2. Fuzzy arithmetic and fuzzy regression

2.1. Some aspects of fuzzy numbers

A fuzzy number (FN) is a fuzzy subset ã defined over real
numbers. It is the main instrument used in Fuzzy Set Theory
(FST) for quantifying uncertain quantities. Two properties are
required for a FN. The first one is that it must be a normal fuzzy
set (i.e. sup

∀x ∈ X
�ã(x) = 1). The second is that it must be convex (i.e.

its ˛-cuts must be convex sets1).
For practical purposes, triangular fuzzy numbers (TFNs) are

widely used FNs since they are easy to handle arithmetically and
they can be interpreted intuitively. We  shall symbolise a TFN ã as
ã = (a, la, ra) where a is the centre and la and ra are the left and
right spreads, respectively. For example, a subjective judgement by
an actuary such as “I expect that for the next two years the claims
cost inflation rate will be around 2% and deviations no greater than
1%” may  be quantified in a very natural way as (0.02, 0.01, 0.01).
Analytically, a TFN can be characterised by its ˛-cuts, a˛, as:

a˛ = [a(˛), ā(˛)] = [a − la(1 − ˛), a + ra(1 − ˛)] (1)

In many actuarial analyses, it is often necessary to evaluate func-
tions (e.g. the net present value of an annuity), which we shall name
y = f(x1, x2,. . .,xn). Then, if x1,x2,. . .,xn are not crisp numbers but
the FNs ã1, ã2, ..., ãn, f (.) induces the FN b̃ = f (ã1, ã2, ..., ãn) whose
membership function must be obtained from Zadeh’s extension
principle. Unfortunately, it is often impossible to obtain a closed
expression for the membership function of b̃,  although in many
cases it is possible to obtain its ˛-cuts, B˛, from a1˛ , a2˛ , ..., an˛ , by
doing:

a˛ = f (ã1, ã2, ..., ãn)˛ = f (a1˛ , a2˛ , ..., an˛ ) (2)

In actuarial mathematics, many functional relationships are
continuously increasing or decreasing with respect to all the vari-
ables involved in such a way that it is easy to evaluate the ˛-cuts
of b̃. Buckley and Qu in [2] demonstrate that if the function f(·) that
induces b̃ is increasing with respect to the first m variables, where
m ≤ n, and decreasing with respect to the last n–m variables, then
b˛ is:

b˛ = [b(˛), b̄(˛)] = [f (a1(˛), ..., am(˛), am+1(˛), ..., an(˛)),

f (a1(˛), ..., am(˛), am+1(˛), ..., an(˛))] (3)

If a FN b̃ is obtained from a linear combination of the TFNs

ãi = (ai, lai
, rai

), i = 1,..,n, i.e. b̃ =
n∑

i=1

kiãi, ki ∈ �, b̃ will be the TFN,

1 This second requirement means that the ˛-cuts must be bounded intervals in
the real line.

b̃ = (b, lb, rb), where:

b =
n∑

i=1

aiki, lb =
n∑

i = 1
ki ≥ 0

lai
|ki| +

n∑
i = 1
ki < 0

rai
|ki|,

rb =
n∑

i = 1
ki ≥ 0

rai
|ki| +

n∑
i = 1
ki < 0

lai
|ki| (4)

It is very usual in real insurance situations to estimate mag-
nitudes as approximate quantities, for example, by means of a
sentence like “the claim provisions must be around 2000 mone-
tary units”. Clearly, FNs can be used to represent these magnitudes.
However, these magnitudes also often need to be quantified with
crisp values. For example, in our context, this will occur when
the definitive amount of claim provisions needs to be specified
in financial statements. This paper proposes using the concept of
the expected value of a FN developed by Campos and González in
[3], which for an FN ã, we  symbolise as EV [ã, ˇ]. This value can be
obtained by introducing the decision-maker risk aversion with the
parameter ˇ, where 0 ≤  ̌ ≤ 1:

EV [ã, ˇ] = (1 − ˇ)

∫ 1

0

a(˛)d  ̨ + ˇ

∫ 1

0

a(˛)d  ̨ (6a)

Notice that the expected value of a FN is an additive measure, and
so:

EV

[
n∑

i=1

ãi, ˇ

]
=

n∑
i=1

EV
[
ãi, ˇ

]
(6b)

2.2. Fuzzy regression model with asymmetric coefficients

In this subsection, we will describe Ishibuchi and Nii’s fuzzy
regression (FR) method in [12], which is an extension of the
one proposed in [25–27].  As [21], [12] mixes traditional Least
Squares Regression (LS) and FR method [26] but also allow a non-
symmetrical structure for the data. Likewise it should be noted that
both [21] and [23] show that combining Ordinary Least Squares
(OLS) regression and the “pure” FR method in [25] avoids some of
the drawbacks in Tanaka’s traditional FR methodology.

As in conventional linear regression, we shall assume that
the explained variable is a linear combination of the explana-
tory variables. This relationship should be obtained from a sample
of n observations {(y1,x1), (y2, x2),. . .,(yj,xj),. . .,(yn,xn)} where xj
is the jth observation of the explanatory variable, which is m-
dimensional: xj = (x1j, x2j, ..., xij, ..., xmj). Moreover xij is the observed
value for the ith variable in the jth observation which is always
crisp. So, yj is the jth observation of the explained variable,
j = 1,2,. . .,n and may  either be a crisp value or a confidence interval.
In both cases, it can be represented as yj = [yj, yj], where yj(yj) is

the lower (upper) extreme of the interval yj. In particular, we must
estimate the following fuzzy linear function:

Ỹj = ã0 + ã1x1j + · · · + ãmxmj (7)

where Ỹj is the estimation of yj after adjusting ã0, ã1, ã2, . . . ãm.
In (7),  the disturbance is not introduced as a random addend

in the linear relation, but is incorporated into the coefficients ãi,
i = 0,1,. . .,m,  whereas in the conventional OLS regression the impre-
cision of the relationship between dependent and independent
variables is captured by the random residual term. Dubois and
Prade [7] point out that introducing fuzzy sets into regression anal-
ysis allows us to handle two  sources of imprecision. Firstly, we  can
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