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Highlights

• The proposed CDFEM is a hybrid between classical p-FEM and fictitious domain methods.
• The CDFEM is useful for embedded domains and interface problems.
• Adaptive, automatic, higher-order mesh generation of 2D and 3D domains defined by level-set data.
• Manipulation of background mesh ensures regularity of the generated, conforming elements.
• Optimal convergence rates are achieved.

Abstract

A higher-order accurate finite element method is proposed which uses automatically generated meshes based on implicit
level-set data for the description of boundaries and interfaces in two and three dimensions. The method is an alternative for
fictitious domain and extended finite element methods. The domain of interest is immersed in a background mesh composed by
higher-order elements. The zero-level sets are identified and meshed followed by a decomposition of the cut background elements
into conforming sub-elements. Adaptivity is a crucial ingredient of the method to guarantee the success of the mesh generation.
It ensures the successful decomposition of cut elements and enables improved geometry descriptions and approximations.
It is confirmed that higher-order accurate results with optimal convergence rates are achieved with the proposed conformal
decomposition finite element method (CDFEM).
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The p-version of the finite element method (p-FEM) enables a higher-order accurate and efficient approximation of
boundary value problems (BVPs) in engineering, natural sciences, and related fields [1–5]. Two crucial requirements
are needed for the successful application of the p-FEM: (i) The geometry must be accurately represented by a mesh
composed of higher-order elements and (ii) the solution of the BVP should be sufficiently smooth. Both requirements
are not easily met. For (i), curved boundaries and interfaces in the domain of interest may render the mesh generation
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difficult, in particular in three dimensions and with elements of higher orders. Even more so when frequent mesh
manipulations are desired, for instance, in the context of moving interfaces (interface tracking) or mesh refinements
in adaptivity and convergence studies. The original geometry is often generated based on Computer Aided Geometric
Design (CAGD or CAD) and the interplay with the analysis tool, i.e., the p-FEM, is not easily established and hardly
automated. Concerning (ii), the smoothness of the involved fields in the BVP, it is noted that discontinuities (e.g., in the
material parameters) and singularities (e.g., in the stress field of a structure) are frequently present. For the successful
application of the p-FEM in these cases, it is again crucial to provide suitable meshes, i.e., those which conform to
the discontinuities and are refined at the singularities. It is thus seen that a lot of effort is associated to generating
higher-order accurate meshes as properties of the geometry and the approximated solutions must both be considered.

Herein, the focus is on the automatic, higher-order accurate generation of conforming meshes based on implicitly
defined geometries. The domain of interest is completely immersed in a background mesh. The boundary of the
domain and interfaces therein, for example, between different materials, are defined by (several) level-set functions
[6–8]. For each level-set function, the elements cut by the zero-level set are decomposed into conforming, higher-order
sub-elements. Therefore, the zero-level set is first identified and meshed by interface elements (reconstruction) and
then customized mappings generate the sub-elements (decomposition). This follows previous works of the author
in [9–11] where the resulting meshes are used in the context of integration and interpolation in implicitly defined
domains. However, in elements where the decomposition fails, e.g., due to very complex level-set data, (isolated)
recursive refinements were suggested and hanging nodes are a natural consequence. Herein, we wish to use the
generated meshes in the context of approximating BVPs and hanging nodes shall be avoided. The quality of the
generated sub-elements becomes an important issue in this context. Following [12], node manipulations in the
background mesh are suggested to ensure suitable, shape-regular elements. One may also possibly use stabilizations
similar to those suggested in [14–17].

Adaptive refinements of the background mesh are suggested in order to (i) refine elements where the decomposition
failed, (ii) improve the geometry description driven by the curvature of the involved level-set functions near the zero-
level sets, (iii) improve the approximation of the BVP, for example, based on error indicators. Because “good” meshes
must consider both, the geometry and the involved (sought) fields of the BVP, adaptivity is a natural ingredient for
automatic mesh generation without any user intervention. Hence, the suggested procedure follows the isogeometric
paradigm [18,19] to fully integrate design and analysis, however, for implicit geometries rather than based on NURBS
as in CAGD.

The fully automatic generation of meshes based on implicit level-set data is gaining increasing attention. We
emphasize the work of [20] in a low-order context for moving interfaces which coined the name CDFEM. A higher-
order extension of this work in two dimensions is found in [21] without adaptive refinements and measures to avoid
ill-shaped elements. This is the first work where the CDFEM is extended to higher-order consistently in two and
three dimensions, including adaptivity and node manipulations to ensure the regularity of the resulting elements. The
resulting method is stable and efficient.

The decomposition of elements is frequently employed in the context of “fictitious domain methods” (FDMs)
such as the unfitted or cut finite element method [14–17], finite cell method [22–26], Cartesian grid method [27,28],
immersed interface method [29], virtual boundary method [30], embedded domain method [31,32] etc. The important
difference between the CDFEM and FDMs is that the first uses the shape functions of the decomposed elements in
the conforming mesh as the approximation basis whereas the second employs the shape functions of the original
background mesh and uses the sub-elements for integration purposes only. Integration in cut elements using element
decompositions is suggested in [33–35] using polygonal sub-cells together with recursive refinements. Curved sub-
cells based on higher-order elements are, e.g., used in [9,11,36,37] and typically lead to much less integration points.
The integration schemes based on element decompositions are also frequently employed in the context of the extended
or generalized finite element methods (XFEM/GFEM), see e.g., [38–40] for the XFEM and [41,42] for the GFEM.
They consider for inner-element jumps and kinks by adding enrichment functions based on the partition of unity
concept [43–45]. Again, in these methods the decomposed sub-elements are only used as integration cells without
using the implied shape functions for the approximation of the BVP. We also mention the approach in [46] providing
a concept for higher-order accurate integration in the presence of one level-set function by deforming the mesh in the
vicinity of the zero-level set.

It is emphasized that the proposed higher-order accurate CDFEM may be seen as an alternative for FDMs where
boundaries are defined implicitly and the XFEM where interfaces are defined implicitly. The numerical results show
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