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Abstract

Finite element analysis of structures under elasto-plastic nonproportional cyclic loadings is useful in seismic engineering,
fatigue analysis and ductile fracture. Usual models with nonlinear stress—strain curves in cyclic behavior are based on Mréz
multisurface plasticity, bounding surface models or models derived from the Armstrong—Frederick rule. These models depart from
the associative Prager’s rule with the main purpose of modeling aspects of cyclic nonlinear hardening. In this paper we develop
a model for cyclic plasticity within the framework of the associative classical plasticity theory using Prager’s rule accounting for
anisotropic nonlinear kinematic hardening coupled with nonlinear isotropic hardening. We include the validation of the theory
against several uniaxial and multiaxial cyclic experiments and an efficient fully implicit radial return algorithm. The parameters
of the model are obtained directly by a discretization of the uniaxial stress—strain behavior. Remarkably, both the presented theory
and the computational algorithm automatically recover classical bi-linear plasticity and the Krieg and Key algorithm if the user-
prescribed stress—strain curve is bilinear.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The finite element analysis of structures under nonproportional and cyclic nonlinear behavior is very important in
many applications, among them seismic engineering [1-3], fatigue and fracture analyses [4—7] and plastic forming
[8—11]. The correct description of multiaxial hardening effects have proved to be critical for an accurate prediction of
the effective displacements, accelerations and safety of the structures [12]. In fatigue analysis of notched specimens,
the plastic loading at the notch edge induces nonproportional multiaxial loading [13], frequently studied through cyclic

* Corresponding author.
E-mail addresses: zhang.meijuan @alumnos.upm.es (M. Zhang), josemaria.benitez@upm.es (J.M. Benitez), fco.montans @upm.es
(F.J. Montans).

https://doi.org/10.1016/j.cma.2017.09.028
0045-7825/© 2017 Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2017.09.028&domain=pdf
http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2017.09.028
http://www.elsevier.com/locate/cma
mailto:zhang.meijuan@alumnos.upm.es
mailto:josemaria.benitez@upm.es
mailto:fco.montans@upm.es
https://doi.org/10.1016/j.cma.2017.09.028

566 M. Zhang et al. / Comput. Methods Appl. Mech. Engrg. 328 (2018) 565-593

plasticity models which, thereafter, are related to nominal strains and stresses through incremental Neuber rules or
related strain or energy methods [5,14—18].

In cyclic behavior, the accurate representation of the Bauschinger effect is crucial, a behavior which is
approximately represented by Masing’s rules. The classical linear kinematic hardening reproduces accurately such
rules, has a very efficient integration algorithm and is available in most finite element programs. This model uses
Prager’s translation rule for the backstress, which is consistent with the principle of maximum dissipation [19].
However, a priori, the direct inclusion of a nonlinear anisotropic kinematic hardening function produces unphysical
loops [20]. Therefore, finite element programs use Prager’s rule exclusively in the case of linear kinematic hardening,
and for nonlinear kinematic hardening, which is needed to better describe the cyclic loops, they resort to other types
of formulations (if available to the user), typically based on the Armstrong and Frederick rule [21,22].

One of the procedures to account for anisotropic, history-dependent nonlinear kinematic hardening is based on
the history of observable quantities by hereditary integrals, as in the endochronic theory, similar to those used in
viscoelasticity [23]. However, since this approach is more cumbersome for computational application and for finite
element analysis, the approach based on internal variables [20], where only information of the previous step is needed,
is usually preferred.

Remarkably, the theories to model nonlinear kinematic hardening based on internal variables have departed from
the classical linearly hardened framework, introducing different non-associative translation rules for the backstress,
as Mrdéz’s rule [24], Garud’s rule [25] or the commented Armstrong and Frederick rule [26]. These rules have
resulted in different models as the Mréz model [24], Chaboche’s model [20,27], bounding surface models [1,28,29],
and nonlinear kinematic hardening models with the addition of multiple backstresses [20,30]. The algorithmic
implementation of some of these models is usually more elaborate than that of classical plasticity [31-35], and even
though some recent efficient algorithms are available for some cases [21,22], they do not constitute a natural extension
of classical Prager’s plasticity. To improve the cyclic multiaxial plastic behavior, sometimes non-proportionality
parameters, obtained for certain materials under certain loading paths by fitting experiments, are employed, like
in Refs. [35-43]. However, despite the common belief [20, p. 206], it is possible to develop nonlinear kinematic
hardening models using Prager’s translation rule and preserving Masing’s rules [44—47]. These models are similar in
conception to Mroz’s model, but with some crucial differences, as the preservation of Prager’s rule, the use of a single
yield surface (outer surfaces are hardening surfaces) and the simplicity of the integration algorithms. Furthermore,
they lack the inconsistencies present in Mréz’s model under multiaxial loading [48,49]. As we show in this paper, the
predictions for multiaxial plastic behavior using Prager’s rule are similar to the behavior observed in the experiments,
at least for the different materials addressed below.

Despite the employed kinematic hardening rule, mixed kinematic—isotropic hardening models have been increas-
ingly used in cyclic loading analysis [10,50-57]. For a better description of cyclic hardening/softening in certain
materials, the effect of a memory for the strain amplitude can be included in the isotropic hardening rule [27,42,58,59],
and the inclusion of isotropic cyclic softening may be used to model the effects of damage by fatigue. However, as seen
below, the presence of isotropic hardening also modifies the anisotropic kinematic hardening moduli, an observation
that must be considered in the formulation and computational algorithm.

Therefore, it is valuable, and the purpose of this paper, to extend the classical von Mises associative theory of
plasticity using Prager’s translation rule to account for history-dependent nonlinear anisotropic kinematic hardening
combined with cyclic isotropic hardening/softening. In the next sections we first introduce the theory, showing that we
just propose a simple extension of the classical framework by allowing a dependence of the effective hardening moduli
on some internal variables. Then we introduce the method to compute such dependence, i.e. the effective hardening
modulus at each instant. Thereafter we explain the efficient radial return algorithm, which for the bilinear case
naturally recovers the solution from Krieg and Key [60]. With some examples we show that the theory predicts rather
well the experimentally observed multiaxial behavior in several materials and that the finite element implementation
preserves the asymptotic quadratic convergence of Newton schemes.

2. Classical J,-plasticity using Prager’s rule with nonlinear anisotropic mixed hardening

2.1. Classical associative plasticity with anisotropic, cyclically modified hardening

The stored “observable” (elastic) energy depends on the elastic strains €., which are a function of the total strains
and some internal strains &, (the plastic strains), i.e. &, (e, € p). The chain rule derived from the explicit dependencies
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