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Highlights

• Automatic, higher-order mesh generation of curved surfaces from level-set data.
• Bounded surface is defined by several level-set functions on a higher-order background mesh.
• The background mesh is manipulated to avoid degenerated elements.
• Mesh generation from individual elements is based on connectivity data of the background mesh.
• Optimal convergence rates on the automatically reconstructed meshes is achieved using standard surface FEM.

Abstract

A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where
a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a
completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master
level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by
additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved
by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate
increase in the condition number compared to handcrafted surface meshes.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Many challenging applications in engineering and natural sciences are characterized by physical phenomena
taking place on curved surfaces in the three-dimensional space. There are numerous examples for transport and
flow phenomena on biomembranes or bubble surfaces [1,2]. Examples in structures are membranes and shells [3,4].
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Phenomena on surfaces may also be coupled to processes in the surrounding volume such as in surfactant transport,
hydraulic fracturing, reinforced structures etc. As an additional challenge, the surfaces may be moving [5–7], i.e. the
domain of interest changes. The modeling of such phenomena naturally leads to boundary value problems where
partial differential equations are formulated on manifolds. For the solution of such models, customized numerical
methods are needed.

The first application of the finite element method for the solution of the Laplace–Beltrami operator on manifolds is
reported in 1988 by Dziuk [8]. Since then, the topic has attracted a tremendous research interest leading to a variety of
numerical methods for PDEs on surfaces existing today, see [9] for an overview. The most straightforward approach
is to generate surface meshes on the manifold and extend the finite element method in a natural way using tangential
differential calculus. That is, standard gradients of the planar two-dimensional case are replaced by surface gradients
on the manifold. It is interesting to note that this approach has been chosen from the beginning in the simulation of
transport phenomena, e.g. [10–12,9]. However, for the modeling of membranes and shells, a less intuitive path using
local coordinate systems and Christoffel symbols is standard since a long time [3,4]. It is rather recent that these
models have been recasted in the frame of global tangential operators [13–16].

Another approach is to only employ an implicit description of the manifold and solve the model equations on
all iso-surfaces at once [17,18]. Then, the problem is naturally set up in the three-dimensional space embedding the
manifolds, i.e. volumetric elements and shape functions are employed. However, typically only the solution on one
iso-surface, say the zero-isosurface, is of interest. One may then restrict the surrounding domain to a narrow band
around the manifold [10,19,20]. There are interesting similarities to phase field and diffuse interface approaches [21].
A recent approach is to collapse the narrow band to the manifold itself. Then, shape functions of the volumetric
background elements are used, however, the integration takes place on the trace of the manifold only [22,23,15]. The
resulting approaches are labeled TraceFEM [24,25,22,26,27] or CutFEM [28,15]. Higher-order approximations of
PDEs on manifolds have been reported in different contexts before: For explicit handcrafted surface meshes in [29]
and in the context of the TraceFEM in [27]. Adaptivity is considered e.g. in [30,31].

Herein, we propose a higher-order accurate approach for the approximation of PDEs on manifolds. The manifold
is described implicitly based on the level-set method. A surface mesh composed by mixed higher-order quadrilateral
and triangular finite elements is automatically generated from a background mesh and given level-set functions. A
master level-set function defines the shape of the manifold. However, as the implied zero-isosurface may be infinite, it
is restricted by additional (slave) level-set functions. That is, several level-set functions imply the bounded manifold
being the domain of interest in the BVP. As a model problem, we consider the Laplace–Beltrami operator and an
instationary advection–diffusion problem. Based on this, the extension of the approach to more advanced transport
problems on surfaces and in the simulation of membranes and shells will be reported in forthcoming publications.

The automatic detection of higher-order surface elements has been reported by the authors in [32,33] in the context
of integration and interpolation. There, only a set of surface elements is needed featuring double nodes and not
necessarily fulfilling C0-continuity. In order to be suited for the approximation of PDEs on surfaces as discussed
herein, (1) continuity requirements have to be fulfilled, (2) the elements must be sufficiently shape regular, and
(3) connectivity information in the usual FEM sense has to be provided, enabling the concept of nodal degrees of
freedom. These issues are addressed herein with emphasis on higher-order accurate approximations. Also, the concept
of using several level-set functions for the definition of the bounded manifold is new and an extension of [33].

The paper is organized as follows: In Section 2 we outline the geometric description of the bounded manifold
based on several level-set functions defined on a background mesh composed by higher-order elements. The automatic
generation of suitable higher-order surface meshes is described in Section 3: The reconstruction of surface elements
approximating the zero-isosurface of the master level-set function, the restriction by means of additional (slave)
level-set functions, the extraction of a continuous surface mesh from the element set, and the manipulation of the
background mesh to achieve shape regular elements. Section 4 shortly recalls the standard finite element approach for
approximations on meshed surfaces. Numerical results are presented in Section 5 for curved lines in two dimensions
and curved surfaces in three dimensions. The Laplace–Beltrami operator is considered as well as instationary
advection–diffusion on manifolds. Finally, a summary and outlook is given in Section 6.

2. Preliminaries

The task is to solve a boundary value problem (BVP) on a surface Γ in three dimensions. Let the surface be possibly
curved, sufficiently smooth, orientable, connected (so there is only one surface), and feature a finite fixed area. The
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