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Abstract

Peridynamic correspondence material models provide a way to combine a material model from the local theory with the
inherent capabilities of peridynamics to model long-range forces and fracture. However, correspondence models in a typical particle
discretization suffer from zero-energy mode instability. These instabilities are shown here to be an aspect of material stability. A
stability condition is derived for state-based materials starting from the requirement of potential energy minimization. It is shown
that all correspondence materials fail this stability condition due to zero-energy deformation modes of the family. To eliminate
these modes, a term is added to the correspondence strain energy density that resists deviations from a uniform deformation.
The resulting material model satisfies the stability condition while effectively leaving the stress tensor unchanged. Computational
examples demonstrate the effectiveness of the modified material model in avoiding zero-energy mode instability in a peridynamic
particle code.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Peridynamics is a nonlocal theory of mechanics in which material points in a continuum or in a group of discrete
particles interact with each other through forces. The exchange of forces between any pair of material points is called
a bond interaction. These forces are determined by the material model according to the current deformation.

Material models in peridynamics explicitly determine the force in each bond. Many material models have been
investigated as the peridynamic theory has been developed. A particularly useful class of material models is called
the correspondence models. These models use a stress–strain relation from the local theory as a means to determine
the bond forces. In principle, any material model from a finite element code can be applied directly in a peridynamic
computational simulation when formulated as a correspondence model.

Correspondence material models have been used successfully in the modeling of a wide variety of material
response, including elastic–plastic and viscoplastic materials with large strains and fracture, for example [1–3].
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However, the usefulness of peridynamic correspondence models has been impeded by some practical issues in their
implementation in meshless peridynamic codes. One such issue is the difficulty that is sometimes encountered when
evaluating the shape tensor defined in Eq. (15), particularly when very large deformations or extensive damage
are present. A more troublesome issue with correspondence models is their tendency to exhibit zero-energy mode
oscillations in meshless simulations. These oscillations typically build up gradually during a long simulation, but they
can eventually ruin the results. They can occur even when the appropriate version [4] of the Courant–Friedrichs–Levy
time step restriction is applied. The purpose of the present paper is to investigate the root cause of this type of
instability as a manifestation of a material instability, rather than merely an artifact of the meshless discretization. A
stabilized correspondence material model is proposed that is stable in both the continuum and discretized equations.

2. Peridynamics background

Peridynamics is a generalization of the standard theory of solid mechanics. It treats the mechanics of continuous
bodies and discrete particles, including long-range forces and fracture, within the same basic field equations. A typical
material point x in a body B interacts with other material points q within a neighborhood called the family of x, denoted
H. The radius of the neighborhood is called the horizon, δ. The vector in the undeformed configuration from x to any
of its neighbors q ∈ H is called a bond, generically given the symbol ξ = q − x. The vector ξ = 0 is excluded from
the family.

The equation of motion in peridynamics is given by

ρ(x)ÿ(x, t) =

∫
H

f(q, x, t) dVq + b(x, t) ∀x ∈ B, t ≥ 0, (1)

where ρ is the density, y is the deformation, and b is the prescribed body force density field. The equation of
equilibrium (see Eq. (24) for the derivation) is written∫

H
f(q, x) dVq + b(x) = 0 ∀x ∈ B. (2)

The vector-valued function f(q, x, t) is the pairwise bond force density (with units of force per volume squared) that q
exerts on x. The material model determines the values of f according to the deformations of the families of x and of q.

The simplest class of material model [5] is called bond-based, in which f(q, x, t) depends only on the deformation
of the bond q − x. More general material response can be incorporated using the state-based class of models [6], in
which f(q, x, t) depends not only on q−x, but also on the deformation of all the other bonds in H. State-based material
models are expressed using mathematical objects called states, which are mappings from H to some other quantity,
either vector- or scalar-valued. By convention, the bond that a state A operates on is written in angle brackets, A⟨ξ⟩.
Dependence of the state on position and time is written in square brackets, A[x, t].

The deformation state Y maps bonds onto their deformed images:

Y[x, t]⟨ξ⟩ = y(x + ξ , t) − y(x, t). (3)

The bond force density t(q, x, t) that q exerts on x due to the material model at x is expressed in the force state T,

T[x, t]⟨q − x⟩ = t(q, x, t). (4)

Due to the requirement for balance of linear momentum, the pairwise bond force density contains contributions from
the material models at both x and q:

f(q, x, t) = t(q, x, t) − t(x, q, t)
= T[x, t]⟨q − x⟩ − T[q, t]⟨x − q⟩. (5)

A material model T̂ is a function that maps a deformation state onto a force state:

T[x, t] = T̂(Y[x, t]).

For example, a bond-based material model might have the form

T̂⟨ξ⟩ =
1
2

C(ξ )M⟨ξ⟩
|Y⟨ξ⟩| − |ξ |

|ξ |
, M⟨ξ⟩ =

Y⟨ξ⟩

|Y⟨ξ⟩|
, (6)
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