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Abstract

We propose a multiscale method for elliptic problems on complex domains, e.g. domains
with cracks or complicated boundary. For local singularities this paper also offers a discrete
alternative to enrichment techniques such as XFEM. We construct corrected coarse test and
trail spaces which takes the fine scale features of the computational domain into account. The
corrections only need to be computed in regions surrounding fine scale geometric features.
We achieve linear convergence rate in the energy norm for the multiscale solution. Moreover,
the conditioning of the resulting matrices is not affected by the way the domain boundary
cuts the coarse elements in the background mesh. The analytical findings are verified in a
series of numerical experiments.

1 Introduction

Partial differential equations with data varying on multiple scales in space and time, so called
multiscale problems, appear in many areas of science and engineering. Two of the most prominent
examples are composite materials and flow in a porous medium. Standard numerical techniques
may perform arbitrarily bad for multiscale problems, since the convergence rely on smoothness
of the solution [6]. Also adaptive techniques [29], where local singularities are resolved by lo-
cal mesh refinement, fail for multiscale problems since the roughness of the data is often not
localized in space. As a remedy against this issue generalized finite element methods and other
related multiscale techniques have been developed [3, 18, 19, 17, 9, 19, 22, 23, 25, 5, 4]. So far
these techniques have focused on multiscale coefficients in general and multiscale diffusion in
particular. Significantly less work has been directed towards handling a computational domain
with multiscale boundary, see e.g. [1]. However, in many applications including voids and cracks
in materials and rough surfaces, multiscale behavior emanates from the complex geometry of
the computational domain. Furthermore, the classical multiscale methods mentioned above aim
at, in different ways, upscaling the multiscale data to a coarse scale where it is possible to solve
the equation to a reasonable computational cost. However, these techniques typically assume
that the representation of the computational domain is the same on the coarse and fine scale.
In practice this is very difficult to achieve unless the computational domain has a simple shape,
which is not the case in many practical applications.

In this paper we design a multiscale method for problems with complex computational do-
main. In order to simplify the presentation we neglect multiscale coefficients in the analysis even
though the methodology directly extends to this situation. The proposed algorithm is based on
the localized orthogonal decomposition (LOD) technique presented in [23] and further developed
in [10, 11, 24, 27]. In LOD both test and trail spaces are decomposed into a multiscale space
and a remainder space that are orthogonal with respect to the scalar product induced by the
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