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a  b  s  t  r  a  c  t

This  study  introduces  an  integrated  fuzzy  regression  (FR)  data  envelopment  analysis  (DEA)  algorithm  for
oil consumption  estimation  and  optimization  with  uncertain  and  ambiguous  data.  This  is quite  important
as  oil  consumption  estimations  deals  with  several  uncertainties  due  to  social,  economic  factors.  Further-
more,  DEA  is integrated  with  FR  because  there  is  no  clear cut  as  to which  FR  approach  is superior  for
oil  consumption  estimation.  The  standard  indicators  used  in  this  paper  are  population,  cost  of  crude  oil,
gross  domestic  production  (GDP)  and  annual  oil  production.  Fifteen  popular  and  most  cited  FR  models
are  considered  in  the  algorithm.  Each  FR model  has  different  approach  and advantages.  The  input  data  is
divided  into  train  and  test  data.  The  FR  models  have  been  tuned  for all their  parameters  according  to the
train  data,  and  the  best  coefficients  are  identified.  Center  of  Average  Method  for  defuzzification  output
process is  applied.  For  determining  the  rate  of  error  of FR  models  estimations,  the rate  of defuzzified
output  of each  model  is  compared  with  its actual  rate  consumption  in test  data.  The  efficiency  of  15 FR
models  is examined  by the  output-oriented  Data  Envelopment  Analysis  (DEA)  model  without  inputs  by
considering  three  types  of relative  error:  RMSE,  MAE  and  MAPE.  The  applicability  and  superiority  of  the
proposed  algorithm  is shown  for  monthly  oil consumption  of Canada,  United  States,  Japan  and  Australia
from  1990  to  2005.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Regression analysis refers to a set of methods by which esti-
mates are made for the model parameters from the knowledge of
the values of a given input–output data set. The goals of the regres-
sion analysis are finding an appropriate mathematical model, and
determining the best fitting coefficients of the model from the given
data. The use of statistical regression is bounded by some strict
assumptions about the given data. Overcoming such limitations,
fuzzy regression (FR) is introduced which is an extension of the clas-
sical regression and is used in estimating the relationships among
variables where the available data are very limited and imprecise
and variables are interacting in an uncertain, qualitative and fuzzy
way. Fundamental differences between FR and classical regression
are as follows [1,2]:

• FR can be used to fit fuzzy data and crisp data into a regression
model, whereas ordinary regression can only fit crisp data.

• Statistical regression analysis is based on some assumptions.
The unobserved error term should mutually be independent and

∗ Corresponding author. Tel.: +98 21 82084162; fax: +98 21 82084162.
E-mail addresses: aazadeh@ut.ac.ir, ali@azadeh.com (A. Azadeh).

identically distributed. Lack of such assumptions affects the effec-
tiveness of the method. In this case FR can be replaced.

• In contrast to the ordinary regression that is based on probability
theory, FR is based on possibility theory and fuzzy set theory.

• Ordinary regression modeling data with randomness type of
uncertainty but FR modeling data with fuzziness type of uncer-
tainty.

• In ordinary regression, the unfitted errors between a regression
model and observed data are assumed as observation error that
is a random variable. In FR, the same unfitted errors are viewed
as the fuzziness of the model structure [3].

FR models have been successfully applied to various prob-
lems such as forecasting [4] and engineering [5,6]. In energy
modeling applications for example Shakouri and Nadimi [7] pro-
posed a novel fuzzy linear regression approach to model the total
energy consumption of the Residential-Commercial sector in Iran.
Also, in another work by Shakouri et al. [8] the fuzzy rule-based
Takagi–Sugeno–Kang (TSK) model is combined with a set of fuzzy
regressions (FR) to forecast the short-term electricity demand. It
can also be applied for oil forecasting problems. The goal of FR
analysis is to find a regression model that fits all observed fuzzy
data within a specified fitting criterion. Different FR models are
obtained depending on the fitting criterion used. In general, there
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are two approaches of FR due to different fitting criterions [9].
The first approach is based on minimizing fuzziness as an opti-
mal  criterion which first proposed by Tanaka et al. [20]. Different
researchers used Tanaka’s approach to minimize the total spread
of the output [10]. As pointed out by Wang and Tsaur [11], the
advantage of this approach is its simplicity in programming and
computation, but it has been criticized to provide too wide ranges
in estimation which could not give much help in application [11]
and not to utilize the concept of least-squares [12]. The second
approach uses least squares of errors as a fitting criterion to min-
imize the total square error of the output. Different aspects of
this approach were investigated by Celmins [13], Diamond [14],
Savic and Pedrycz [15] and Chang and Ayyub [32]. Celmins [16]
defines a compatibility measure between fuzzy data and a model
and uses this measure as a model-fitting criterion. Diamond [14]
developed a fuzzy least square method by using the compact �-
level sets. Savic and Pedrycz [15] proposed a combined approach
for FLSRA by integrating minimum fuzziness criterion into the ordi-
nary least-squares regression. Chang and Ayyub [32] discussed
reliability issues of FLSRA, such as standard error and correlation
coefficient. This approach, though providing narrower range, costs
too much of computation time (2000). Hojati et al. [17] introduced
a goal programming-like approach to minimize the total deviation
of upper values of H-certain estimated and corresponded observed
intervals and deviation of lower values of H-certain estimated
and related observed intervals. FR models have been successfully
applied to various problems such as forecasting [4] and engineering
[6]. It can also be applied for energy forecasting problems. Conven-
tional regression along with intelligent approaches has been used
for energy consumption estimation [18,19].

The remainder of this paper is organized as follows. In the
next section, different types of FR and their shortcomings are
brought. Error estimation methods are presented in Section 3.1.
Some popular defuzzification methods are introduced in Section
3.2. Comparing the FR models for each case study is shown in Sec-
tion 4 followed by the obtained results of the case studies in Section
4.1. At last the summary of this research is presented in Section 5.

2. Fuzzy regression models

Fuzzy linear regression was introduced by Tanaka et al. [20], to
decide a fuzzy linear relationship by, Y = A0X0 + A1X1 + · · · + AkXk;
where regression coefficients Aj , j = 0, . . .,  K, were supposed to be a
symmetric triangular fuzzy number, with center ˛j , having mem-
bership function equal to one, and spreads cj , cj ≥ 0. The dependent
variable (y) is a fuzzy number. The independent variables (x) can
be taken into consideration as crisp or fuzzy numbers.

The input information are n sets of variables yi, xi0, xi1, . . . , xij ,
i = 1, 2, . . . , n; n ≥ j + 1, where xi0 = 1. The response variable yi

is assumed to be a symmetric triangular fuzzy number with cen-
tral value ȳi and spreads ēi, where ēi ≥ 0. Independent variables
values xij , i = 1, 2, . . . , n j = 1, 2, . . . , k, is also supposing to be a
symmetric triangular fuzzy number with a center x̄ij and spreads
fij (fij ≥ 0). The assigned membership functions of both dependent
and independent variables are linear. If we are just interested in that
membership function value of yi has at least H, where 0 ≤ H ≤ 1, we
should consider the interval [ȳi − (1 − H) × ēiȳi + (1 − H) × ēi]. This
interval is illustrated in Fig. 1.

Here, H shows the minimum acceptable degree of pre-
cision, and we will make reference to this interval as
H-certain observed interval. Similarly, suppose that the inde-
pendent variables xj, j = 1, 2, . . . k, have certain values and
regression coefficient Aj, j = 1, 2, . . . k, are assume to be
symmetric triangular fuzzy numbers, the estimated inter-
val corresponding to a input set of independent variables
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Fig. 1. An H-certain observed interval.

X(xi0, xi1, . . . , xik) having membership function value of at least H

is:
[∑k

j=0(˛j − (1 − H) × cj) × xij

∑k
j=0(˛j + (1 − H) × cj) × xij

]
,

We will refer to this distance as H-certain estimated interval.
The membership function of the fuzzy parameter Aj is repre-

sented by:

�Aj
(aj) =

⎧⎨
⎩ 1 −

∣∣˛j − aj

∣∣
cj

for ˛j − cj ≤ aj ≤ ˛j + cj

0 otherwise

For Case 1 [20] introduced the following linear programming
formulation to predict Aj, j = 1, 2, . . . , k:

Minimize c0 + c1 + c2 + · · · + ck

subject to :

k∑
j=0

(˛j + (1 − H) × cj) × xij ≥ ȳi + (1 − H) × ēi i  = 1, . . . , n,

k∑
j=0

(˛j − (1 − H) × cj) × xij ≤ ȳi − (1 − H) × ēi i  = 1, . . . , n,

˛j = free, cj ≥ 0, j = 0, . . . , k.

(1)

Note that in the above model cjs are supposed to be non-
negative, because the fuzziness in estimated intervals usually
increases for larger values of independent variables xj [17]. Fig. 2

presents degree of imprecision of Ỹi to the collected data ˜̄Yi.
There are some criticisms on Tanaka et al.’s [20] FR model. One

of them is that the results are xj-scale dependent and many cjs
might equal to zero [26]. To repair this problem, replacement for
sum of spreads of FR model’s coefficients, sum of spreads of the
estimated intervals can be used as an objective function. Tanaka
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Fig. 2. Degree of imprecision of Ỹi to the collected data ˜̄Yi .
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