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Abstract

Laminated composites are prone to delamination failure due to the lack of reinforcement through the thickness. Therefore,
during the design process the initiation and propagation of delaminations should be accounted for as early as possible. This paper
presents computationally efficient nine degree-of-freedom (dof) and eight-dof shear locking-free beam elements using the mixed
form of the refined zigzag theory (RZT(m)). The corresponding nine-dof and eight-dof elements use the anisoparametric and
constrained anisoparametric interpolation schemes, respectively, to eliminate shear locking in slender beams. The advantage of the
present element over previous RZT beam elements is that no post-processing is required to accurately model the transverse shear
stress while maintaining the computational efficiency of a low-order beam element. Comparisons with high-fidelity finite element
models and three-dimensional elasticity solutions show that the elements can robustly and accurately predict the displacement
field, axial stress and transverse shear stress through the thickness of a sandwich beam or a composite laminate with an embedded
delamination. In fact, the accuracy and computational efficiency of predicting stresses in laminates with embedded delaminations
make the present elements attractive choices for RZT-based delamination initiation and propagation methodologies available in the
literature.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Laminated composites are prone to delamination failure due to the lack of reinforcement through the thickness,
and this failure mode adversely affects the structural integrity of composite structures. Hence, the initiation and
propagation of delaminations should be accounted for at the early stages in the design process. In this respect, tools
for accurate stress predictions are an important prerequisite.

Currently, the standard approach in industry is to use three-dimensional finite element (3-D FE) models or layerwise
theories to predict accurate 3-D stress fields. At the preliminary design stage, detailed yet computationally expensive
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3-D FE solutions are prohibitive for rapid design as meshes with multiple elements per layer are typically required for
converged results. Therefore, 3-D layerwise models are often only used on a component-scale level in areas of high
stress concentration or for safety-critical components.

For most composite laminates, the thickness dimension is at least an order of magnitude smaller than representative
in-plane dimensions, which allows these structures to be modeled as thin beams, plates or shells. This feature facilitates
a reduction from a 3-D problem to a 2-D one coincident with a chosen reference axis or surface. The major advantage
of this approximation is a significant reduction in the total number of variables and computational effort required.

In multi-layered composite structures, the effects of transverse shear and normal deformations are especially
pronounced because the ratios of longitudinal to transverse moduli are approximately one order of magnitude greater
than for isotropic materials (E iso

xx /G iso
xz = 2.6, E11/G13 ≈ 140/5 = 28 and E iso

xx /E iso
zz = 1, E11/E33 ≈ 150/10 =

15). Second, differences in layerwise transverse shear and normal moduli lead to abrupt changes in the slopes of the
three displacement fields ux , u y, uz at layer interfaces. This is known as the zigzag phenomenon (see Fig. 1) and, as
shown by Demasi [1], the zigzag form of the displacements ux , u y and uz can be derived directly from interfacial
continuity requirements of the through-thickness stresses.

The classical theory of plates (CTP) [2,3] and its extension to laminated structures, namely classical laminate
analysis (CLA) [4], are commonly regarded as inadequate for predicting accurate through-thickness stresses under
the conditions described in the previous paragraph. This theory neglects the effects of transverse shear and transverse
normal strains, the displacement fields neglect the zigzag effect, and the transverse displacement is assumed to be
constant through the thickness.

To overcome these deficiencies a large number of approximate higher-order 2-D theories have been formulated with
the aim of predicting accurate 3-D stress fields while maintaining low computational expense. Refinements of CLA
along these lines have focused mainly on displacement-based models due to the relatively intuitive physical meaning
of the displacement variables that govern the distortion of the plate cross-section. These theories extend from first-
order shear deformation theories by Mindlin [5] and Yang, Norris and Stavsky [6] to higher-order Levinson–Reddy-
type shear deformation models that enforce vanishing shear strains at the top and bottom surfaces in the displacement
field a priori [7,8], and further to generalized higher-order theories that do not make this initial assumption and
may account for transverse normal deformation, i.e. thickness stretching [9,10]. Finally, starting with the works of
Lekhnitskii [11] and Ambartsumyan [12] in the Russian literature, and Di Sciuva [13] and Murakami [14] in the
Western literature, attempts were made to incorporate changes in the layerwise slopes of the in-plane displacements
ux and u y via unknown zigzag bending rotations multiplied by layup-dependent zigzag functions. Since then, more
accurate zigzag functions have been proposed by Tessler et al. [15–18] and Icardi [19], with the latter work providing
the most recent assessment of different zigzag theories.

A fundamental characteristic of purely displacement-based theories is that all strains and stresses are derived
from the displacement assumptions using the kinematic and constitutive equations, respectively, and transverse
strains and transverse stresses are typically not recovered accurately in this manner [20]. More accurate transverse
stresses can be recovered a posteriori by integrating the in-plane stresses in Cauchy’s 3-D indefinite equilibrium
equations [21], and various techniques exist to achieve this within the displacement-based finite element method
(FEM) [22–25]. The disadvantage of this technique is that the post-processed transverse stresses no longer satisfy
the underlying equilibrium equations of the theory, in terms of force resultants and moments, and are therefore
variationally inconsistent. A second disadvantage of this technique is that higher-order derivatives of the kinematic
variables are required, and for C0-continuous finite elements, computing these derivatives leads to oscillations that
require smoothing [22].

The aforementioned post-processing operation can be precluded if independent assumptions for the transverse
stresses are made. This results in a mixed displacement/stress-based approach, whereby the governing equilibrium
equations and boundary conditions are derived by means of a mixed-variational statement. For example, in the
Hellinger–Reissner mixed variational principle [26,27], the strain energy is expressed in complementary form in
terms of in-plane and transverse stresses, and Cauchy’s 3-D equilibrium equations are introduced as constraints via
Lagrange multipliers. This has the advantage that the six stress fields are always equilibrated and provide very accurate
predictions of through-thickness stresses [28,29].

Forty years after publishing his work on the Hellinger–Reissner principle, Reissner [30] had the insight that
it is sufficient to make separate assumptions for the transverse stresses because only these have to be specified
independently to guarantee interfacial continuity requirements. This variational statement is known as Reissner’s
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