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Abstract

We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number
of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided
into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in
the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points),
we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in
integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization
problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in
terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not
solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that
the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to
the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two
nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples,
the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing
accuracy.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Generally speaking, model order reduction refers to any endeavor aimed at constructing a simpler model from
a more complex one. The simpler model is usually referred to as the reduced-order model (ROM), while the more
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complex one is termed the full-order or high-fidelity model. This full-order model may be, for instance, — as is the
case here — a finite element (FE) model.

The focus of the present paper is on the so-called projection-based, reduced-order models. The existence of such
low-dimensional representations for a given parametrized finite element problem relies on the premise that the state
variable can be accurately approximated by a linear combination of a few global basis vectors. The most common
approach is to determine these basis vectors by applying some type of dimensionality reduction strategy (such as the
Proper Orthogonal Decomposition, POD) over a so-called training sample. This sample is obtained by previously
solving — in an offline stage — the full-order model for judiciously chosen values of the input parameters.

1.1. Approximation of nonlinear terms

In the general case of governing equations featuring terms that bear a nonaffine relationship with both the state
variable and input parameters, the construction of an inexpensive low-dimensional model entails two sequential
stages [1], namely: (1) projection onto the reduced basis, and (2) approximation of the nonlinear term. Once a basis
matrix for the state variable is available, the projection stage is a standard operation consisting in introducing the
approximation of the state variables in the governing equation, and then in posing the resulting equation in the space
spanned by the basis vectors. This operation naturally leads to a significant reduction in the number of unknowns, and
hence diminishes considerably the equation solving effort. However, in a general nonlinear case, the computational
cost of evaluating the residual still depends on the size of the underlying finite element mesh—hence the need for a
second reduction stage.

In contrast to the first reduction stage, which is more or less standard, the second stage of dimensionality reduction
— Ryckelynck [2] coined the term hyper-reduction to refer to it — is far more challenging and still remains an issue of
discussion in the model reduction community. In the following, we examine the various approaches encountered in
the related literature to deal with this additional dimensionality reduction stage.

1.2. Classification of “hyper-reduction” methods

Let F € RY denote' the full-order term bearing a general, nonaffine relationship with both the input variable
and the state variable (in the context of this paper, F# € R will be the vector of FE nodal internal forces). The
corresponding projection onto the reduced order space will be represented by F € R" (n <« N), the connection
between these two variables being the matrix of basis vectors & € R¥*" (F = &T F"). Existing approaches for
dealing with the approximation of F can be broadly classified as nodal vector approaches and integral approaches.

1.2.1. Nodal vector approximation approaches (“gappy” data)

In this type of approaches, the approximation is carried out by replacing the finite element vector F" by a
low-dimensional interpolant F" ~ RFI';”, Rp € RN>X™ being the interpolation matrix, and I';” the entries of F"
corresponding to the degrees of freedom (z C {1, 2, ..., N}) at which the interpolation takes place. The interpolation
matrix is obtained following the common procedure of computing a basis matrix for F”, and then determining a
set of indices so that the error is minimized over a set of representative snapshots of F. This set of interpolation
indices can be determined offline using procedures such as the Empirical Interpolation Method (EIM) [3,4], the Best
Points Interpolation Method (BPIM) [5], the Discrete BPIM [6] or the Missing Point Estimation Method [7]. The
idea behind this vector approximation approach has its roots in the landmark work of Everson and Sirovich [8] for
reconstruction of “gappy” data, and was historically the first proposal for dealing with nonlinear terms in model order
reduction; it has been adopted by, among others, [1,9-14]. Alternatively, [2] proposes to bypass the construction of
the low-dimensional interpolant and simply solve the balance equations at appropriately selected degrees of freedom
(collocation).

1 A word in notation is in order here. The superindex £ is employed throughout the paper to denote finite element nodal quantities; bare symbols,
on the other hand, are associated to reduced-order variables, that is, variables projected onto the reduced-order space. Likewise, FE and reduced-
order dimensions are represented by upper-case and lower-case symbols, respectively. For instance, N and n denote the number of unknowns in
the FE and reduced-order problems, respectively, whereas M and m represents the total number of integration points in the FE and reduced-order
problem, respectively.
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