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Highlights

• We use the “Invariant Energy Quadratization” approach to transform the free energy functional into an equivalent, quadratic
form by introducing new variables. Based on the reformulated system, we develop a first and a second order semi-discretized
scheme in time for the system, in which all nonlinear terms are treated semi-explicitly.

• The resultant semi-discretized schemes consist of a linear elliptic equation system at each time step, where the coefficient matrix
operator is symmetric positive definite and thus the system can be solved efficiently. We further prove that the proposed schemes
are unconditionally energy stable, i.e. thermodynamically consistent in the discrete case.

• Convergence test together with 2D and 3D numerical simulations are presented after the semi-discrete schemes are fully
discretized in space using the Fourier-Spectral method to demonstrate the stability and the accuracy of the proposed schemes.

• Moreover, the new schemes are the first such linear and accurate schemes with unconditional energy stability for the nonlinear
coupled multivariate model.

Abstract

In this paper, we consider the numerical solution of a binary fluid–surfactant phase field model, in which the free energy
contains a nonlinear coupling entropy, a Ginzburg–Landau double well potential, and a logarithmic Flory–Huggins potential. The
resulting system consists of two nonlinearly coupled Cahn–Hilliard type equations. We develop a first and a second order time
stepping schemes for this system using the “Invariant Energy Quadratization” approach; in particular, the system is transformed
into an equivalent one by introducing appropriate auxiliary variables and all nonlinear terms are then treated semi-explicitly. Both
schemes are linear and lead to symmetric positive definite systems in space at each time step, thus they can be efficiently solved. We
further prove that these schemes are unconditionally energy stable in the discrete sense. Various 2D and 3D numerical experiments
are performed to validate the accuracy and energy stability of the proposed schemes.
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1. Introduction

Surfactants are some organic compounds that can reduce the surface tension of the solution and allow for the
mixing of immiscible liquids. A typical well-known example of immiscible liquids is the mixture of oil and water.
There are many studies on modeling and numerical simulations for investigating the binary fluid–surfactant system.
In the pioneering work of Laradji et al. [1,2], the diffuse interface approach, or called the phase field method, was first
used to study the phase transition behaviors of the monolayer microemulsion system, formed by surfactant molecules.
The phase field method is a well-known effective modeling and simulation tool to resolve the motion of free interfaces
between multiple material components. About its recent developments in advanced algorithms and computational
technologies, we refer to [3–21] and references cited therein.

A variety of binary fluid–surfactant phase field (BFS-PF) models had been well investigated in the past two decades,
see [1,2,18,22–25]. In [1,2], two phase field variables are introduced to represent the local densities of the fluids, as
well as the local concentration of the surfactant, respectively. There are two types of nonlinear energy terms in the
model, including (i) the phenomenological Ginzburg–Landau (G–L) double well potential for the density variable to
describe the phase separation behaviors of the fluid mixture, and (ii) the nonlinear coupling entropy term to ensure
the high fraction of the surfactant near the fluid interface. Subsequently, the authors in [23] developed a modified
model by adding an extra diffusion term and a G–L type potential for the concentration variable, in order to improve
the stability. In [22] the logarithmic Flory–Huggins (F–H) potential was added in order to restrict the range of the
concentration variable, while the nonlinear coupling entropy is essentially the same as that in [1,2,23]. A slightly
different nonlinear coupling entropy was presented in [24], which could penalize the concentration to accumulate
along the fluid interface. In [25], the authors further modified the model in [24] by adding the F–H potential for the
local concentration variable as well.

Numerically, it is a challenging issue to develop unconditionally energy stable schemes to discretize the stiff
nonlinear terms for the phase field type models, where the stiffness is originated from the thin interface thickness
parameter. As a matter of fact, the simple fully-implicit or explicit type discretizations will induce very severe time
step size constraint (called conditionally energy stable) on the interfacial width [26–28], so they are not efficient
in practice. Many efforts had been done in this direction in order to remove this type of time step size constraint
(cf. [10,26,27,29,29–51]). About these developed numerical techniques, we give a detailed discussion in Section 3.
Moreover, we emphasize that the “unconditional” here only means the schemes have no constraints on the time step
size from stability point of view. However, large time step size will definitely induce large errors in practice. This fact
motivates us to develop more accurate schemes, e.g., the second order time stepping schemes while preserving the
unconditional energy stability in this paper.

In addition to the stiffness issue from the interfacial width, we must notice that a particular specialty of the BFS-PF
system is the strong nonlinear couplings between multiple phase field variables, that increases the complexity for
algorithm developments to a large extent. Therefore, although a variety of phase field fluid–surfactant models had
been developed for over twenty years, there are very few successful attempts in designing efficient and energy stable
schemes for them. Recently, in [52], Gu et al. had developed a first order in time, nonlinear scheme to solve a particular
BFS-PF model developed in [24,25] based on the convex splitting approach, where the convex part of the free energy
potential is treated implicitly while the concave part is treated explicitly. Except an assumption that the approximate
solutions always (accidentally) sit inside the domain of the logarithmic functional (such an assumption is often hard to
hold in practical simulations), their arguments about the convex–concave decomposition for the coupling potential are
not valid as well since it is not sufficient to justify the convexity of a function with multiple variables from the positivity
of second order partial derivatives. In addition, their scheme is only of first order in time, and its computational cost
is relatively expensive due to the nonlinear nature.

Therefore, in this paper, the main purpose is to develop some more efficient and effective numerical schemes to
solve the particular BFS-PF model that had been developed in [24,25] since this model is a typical representative
of nonlinearly coupled multivariate fluid–surfactant models. We expect that our schemes can combine the following
three desired properties, i.e., (i) accurate (second order in time); (ii) stable (the unconditional energy dissipation law
holds); and (iii) easy to implement and efficient (only need to solve some fully linear equations at each time step).
To achieve such a goal, instead of using traditional temporal discretization approaches like simple implicit, stabilized
explicit, convex splitting, or other various tricky Taylor expansions to discretize the nonlinear potentials, we adopt
the so-called Invariant Energy Quadratization (IEQ) method, which is a novel approach and had been successfully
applied for other gradient flow models with various nonlinear potentials in the author’s recent work (cf. [39,53–58]).
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