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Highlights

• A rigorous and unified mass lumping scheme for higher-order elements is proposed.
• The reason of failure of the common used schemes for mass lumping higher order elements is disclosed.
• The excellent properties of the proposed mass lumping scheme are demonstrated.

Abstract

In dynamic analysis with explicit time integration schemes, a lumped mass matrix (LMM) is preferable, because LMM can
avoid solving the large scale simultaneous algebraic equations. Mathematically rigorous mass lumping schemes, such as the mass
lumping by nodal quadrature and the row-sum technique, are applicable to only linear or bilinear elements. For higher-order
elements, such as 8-node serendipity elements, the diagonal scaling procedure is the only lumping method that can be recommended
to generate positive definite diagonal element mass matrices. Unfortunately, there is no mathematical theory in support of this
approach. This study proposes a general mass lumping scheme applicable to higher order elements, where the virtual work of
initial force is integrated over the problem domain that is viewed as the manifold covered by the finite element patches. By a series
of numerical experiments, both free and forced vibration problems, it is suggested that even in the implicit time integration scheme
the consistent mass matrix (CMM) can be superseded by the proposed LMM. Furthermore, the proposed LMM has much stronger
adaptability to distorted meshes.
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1. Introduction

In structural dynamics applications, lumped mass matrices offer several benefits. Explicit time integration schemes
are often necessary in problems such as crash, impact, earthquake and explosion, which require very small time steps
to accurately capture the critical physical phenomenon [1]. Furthermore, from a computational viewpoint, implicit
time integration algorithms, albeit unconditionally stable, may become uneconomical if large meshes of complex
non-linear structures are involved. In explicit time integration algorithms, since there are no numerical iterations at
each time step, these algorithms have good properties in terms of accuracy and robustness for problems with strong
nonlinearities [2]. With explicit schemes, if a lumped mass matrix (LMM) is employed instead of the consistent
mass matrix (CMM), computational cost can be reduced significantly as solving large-scale simultaneous equations
associated with the mass matrix is avoided. Even when used in the context of implicit time integration schemes,
CMMs have been found to result in spurious oscillations in the solution, and the use of LMMs has been advocated [3].
Therefore, in dynamic analysis, a lumped mass matrix is generally preferable.

Lumped mass matrices have other important applications beyond time integration schemes. The modal method is an
important technique to assess the dynamic response of a structure, where a generalized eigenvalue problem is solved.
If the mass matrix is diagonal, the generalized eigenvalue problem reduces to a conventional eigenvalue problem, for
which powerful solvers are more readily available than for the generalized eigenvalue problem. Moreover, using the
same computational effort and memory as for the generalized eigenvalue problem, more modes of the conventional
eigenvalue problem can be computed. Such higher frequency modes play an important role in wave propagation
analysis [4].

Over the past several decades, the finite element method (FEM) [5] has been the most widely used numerical
approach in solving structural dynamics problems. In FEM, the global LMM is obtained by assembling the element
LMMs, very similar to forming the global stiffness matrix. An element LMM should satisfy certain constraints, called
the admissible conditions [6], such as non-negativity and mass conservation. There have been many mass lumping
schemes developed in the finite element literature (see [7–10]), but only the following three schemes appear to be
selected in FEM textbooks such as [11–13].

(1) Mass lumping by nodal quadrature [14], where the mass matrix is computed using integration points located at
the element nodes.

(2) The row-sum technique [11], in which the lumped mass matrix is obtained by setting

M l
i i =

∑
j

Mc
i j

and M l
i j = 0 (i ̸= j). Here, M l

i j and Mc
i j represent the components of the element LMM and element CMM,

respectively.
(3) The diagonal scaling procedure [3], which sets M l

i i = αMc
ii and M l

i j = 0 (i ̸= j), with the constant α selected to
satisfy mass conservation of the element,∑

i

M l
i i =

∫ e

Ω

ρdV,

with ρ the material density.
In general, the three schemes give different answers. For some higher order elements, such as the 6-node

isoparametric triangular element and the 8-node serendipity quadrilateral element, the first two schemes, which have a
more definite mathematical basis, give zero or negative diagonal items in the lumped mass matrices, posing significant
impediments in practical applications. As a consequence, Hughes said [11]: “Presently, the special lumping technique
(called the diagonal scaling procedure in this study and other literature –annotated by the authors) is the only lumping
technique that can be recommended for arbitrary elements. Unfortunately, no mathematical theory in support of it
has been forthcoming”. And although it has been often used successfully in solid and structural mechanics and heat
conduction, a procedure that is not rigorous in theory is always precarious, and indeed some disappointing results
have been obtained in fluid mechanics [15].

Apart from the above mentioned schemes, there are also some special mass lumping schemes developed for
numerical methods including extended finite element method (XFEM) [16–20], and meshfree method [21–23]. All
these procedures are based upon intuition, rather than on a firm mathematical basis.
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