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Highlights

• Topological derivative of elastic anisotropic and heterogeneous 2D problem.
• Novel, extremely simple closed formula for the topological sensitivity.
• Full mathematical justifications for the obtained formulas.
• Potential applications to structural topology design.

Abstract

The topological sensitivity analysis for the heterogeneous and anisotropic elasticity problem in two-dimensions is performed in
this work. The main result of the paper is an analytical closed-form of the topological derivative for the total potential energy of the
problem. This derivative displays the sensitivity of the cost functional (the energy in this case) when a small singular perturbation
is introduced in an arbitrary point of the domain. In this case, we consider a small disc with a completely different elastic material.
Full mathematical justification for the derived formula, and derivations of precise estimates for the remainders of the topological
asymptotic expansion are provided. Finally, the influence of the heterogeneity and anisotropy is shown through some numerical
examples of structural topology optimization.
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1. Introduction

Topological asymptotic analysis allows obtaining an asymptotic expansion of a given shape functional when
a geometrical domain is singularly perturbed. This perturbation can be materialized by the insertion of holes,
inclusions, source-terms or even cracks. The main concept arising from this analysis is the topological derivative [1].
This derivative measures the sensitivity of the shape functional with respect to the infinitesimal singular domain
perturbation and it was rigorously introduced in [2]. Since then, this concept has proven extremely useful in the
treatment of a wide range of problems; see, for instance, [3–11]. Concerning the theoretical development of the
topological asymptotic analysis, besides the monograph [1], the reader is referred to [12,13].

In order to introduce these concepts, let us consider an open and bounded domain Ω ⊂ R2, see Fig. 1, which is
subject to a non-smooth perturbation confined in a small region ωε(x) = x + εω of size ε. Here, x is an arbitrary
point of Ω and ω is a fixed domain of R2. Then, we assume that a given shape functional Jε(Ω), associated to the
topologically perturbed domain, admits the following topological asymptotic expansion [1]

Jε(Ω) = J (Ω)+ f (ε)T (x)+ o( f (ε)), (1)

where J (Ω) is the shape functional associated to the unperturbed domain and f (ε) is a positive function such that
f (ε) → 0 when ε → 0+. The function x → T (x) is termed the topological derivative of J at x . Therefore, the
term f (ε)T (x) represents a first order correction of J (Ω) to approximate Jε(Ω) in x . In this work, the singular
perturbation is characterized by a circular disc, denoted Bε, with boundary ∂Bε and different constitutive properties,
see Fig. 1.

From (1), we obtain the standard definition of the topological derivative by passing to the limit ε → 0+:

T (x) = lim
ε→0+

Jε(Ω)− J (Ω)
f (ε)

. (2)

Notice that, since we are dealing with singular domain perturbations, the shape functionals Jε(Ω) and J (Ω) are
associated to topologically different domains. Therefore, the above limit is not trivial to be calculated. In particular,
we need to perform an asymptotic analysis of the shape functional Jε(Ω) with respect to the small parameter ε,
i.e. we need information of Jε(Ω) when ε → 0+. As it will be shown later, the shape functional difference (2)
depends on the polarization tensor, which is considered a fundamental concept on the topological derivative topic.
This tensor, also known in the literature as Pólya–Szegö polarization tensor, arises from the asymptotic analysis in
singularly perturbed geometrical domains [14]. This mathematical concept permits to write an asymptotic expansion
of the shape functional Jε(Ω) by means of functions evaluated in the unperturbed domain Ω (without considering
Bε). The polarization tensor is characterized by a matrix – polarization matrix – depending only on the constitutive
properties of the problem and the shape of the singular domain perturbation [15].

The topological derivative, in its closed form, has been fully developed for a wide range of physical phenomena.
Most of them, by considering homogeneous and isotropic constitutive behaviors. In fact, only a few works dealing with
heterogeneous and anisotropic material behavior can be found in the literature, and, in general, the derived formulas
are given in an abstract form (see, for instance, [12]). Closed and analytical forms for this kind of constitutive behavior
have been only developed for heat diffusion problems (see [16–18,2]). For anisotropic elasticity, the existence and
properties of the polarization tensor was studied in [19,20]. However, the polarization tensor is given again in an
abstract form. A technique for the numerical evaluation of the polarization tensor is presented in [21].

In this work, we derive the topological derivative in its closed form for the total potential energy associated to
an anisotropic and heterogeneous elasticity problem. We assume as singular perturbation a small circular inclusion
introduced at an arbitrary point of the domain. The constitutive properties of the small disc are also anisotropic
and completely different from the elasticity properties of the matrix. In addition, we provide a full mathematical
justification of the derived formula, and develop precise estimates for the remainders of the topological asymptotic
expansion.

Bearing this in mind, the heterogeneous anisotropic topological derivative concept, can be applied in advanced
technological research areas such as topology and structural optimization simultaneously combined with topological
material-design. In fact, in multi-scale modeling, for a given microstructure the homogenized constitutive response is,
in general, anisotropic. In addition, since in each macroscopical structural point we have a different microstructure, the
constitutive homogenized response at the macro-scale varies from point to point, i.e., it is heterogeneous. Therefore,
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