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Highlights

• Developed a crack-tracking approach to propagate embedded failure surfaces in 3D.
• The effect of Dirichlet boundary conditions on the crack-tracking method is closely examined.
• Several numerical examples are conducted to compare the method with more traditional alternatives.

Abstract

We develop a local, implicit crack tracking approach to propagate embedded failure surfaces in three-dimensions. We build
on the global crack-tracking strategy of Oliver et al. (Int J. Numer. Anal. Meth. Geomech., 2004; 28:609–632) that tracks all
potential failure surfaces in a problem at once by solving a Laplace equation with anisotropic conductivity. We discuss important
modifications to this algorithm with a particular emphasis on the effect of the Dirichlet boundary conditions for the Laplace
equation on the resultant crack path. Algorithmic and implementational details of the proposed method are provided. Finally,
several three-dimensional benchmark problems are studied and results are compared with available literature. The results indicate
that the proposed method addresses pathological cases, exhibits better behavior in the presence of closely interacting fractures, and
provides a viable strategy to robustly evolve embedded failure surfaces in 3D.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the finite element community has focused attention on a class of embedded interface
methods that allow cracks to be oriented arbitrarily with respect to the underlying finite element mesh. Both the
Generalized/eXtended Finite Element Methods (G/X-FEM) [1–4] and the Strong Discontinuity Approaches (also
known as embedded FEM or E-FEM) [5–8], facilitate the treatment of cracks as arbitrary interfaces by enhancing the
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kinematics of the underlying mesh. By treating cracks as arbitrary interfaces, these methods offer the potential for
addressing the pathological mesh-dependence of the interface element approaches [9,10]. However, since the cracks
are now arbitrary with respect to the underlying volume mesh, a tracking mechanism separate from the bulk mesh
needs to be introduced to locate the crack surface within the finite element mesh.

Within the embedded finite element methods (G/X-FEM and E-FEM), crack-tracking algorithms can be broadly
classified into two major categories: (a) explicit approaches, and (b) implicit approaches. In the explicit methods,
cracks are represented as a collection of piecewise segments in 2D, and piecewise triangular and quadrangular surfaces
in 3D. Early efforts in this direction discretized the evolving crack surface through a C0 continuous surface formed
from a union of the triangles and quadrilaterals that separate a cracked tetrahedral element into two (see Areias and
Belytschko [11], Gasser and Holzapfel [12]). However, with these approaches in 3D, one needs to modify the normal to
the local crack plane in an ad hoc manner if a globally continuous crack path is desired. A more general methodology
is to define two completely independent meshes, namely the underlying volume mesh and an independent triangulation
of the crack surface (see for e.g. [13–15]). The reader is referred to Garzon et al. [16] and the references therein for a
detailed description of these approaches and the current state-of-the-art. While these approaches have the advantage
that the element size has no bearing on the accuracy of the crack surface representation, they also require a very
specific machinery to handle the computational geometry challenges not available in most general purpose finite
element software.

By contrast, in implicit approaches, the crack surface is represented by a zero iso-surface of a signed-distance
field associated with the nodes of the underlying finite element mesh. Each crack is represented by two orthogonal
level set functions, one associated with the crack surface and the second associated with the crack front such that the
intersection of the zero iso-surfaces of these two functions precisely locates a crack front (see Möes et al. [17]). In
addition, Hamilton–Jacobi type equations are solved over whole or part of the domain using finite difference methods
(see Gravouil et al. [18]) or Fast Marching Methods (see Sukumar et al. [19,20]) to evolve these level set functions
as the crack propagates. More recently, improvements to these algorithms have also been proposed in Duflot [21] and
Colombo and Massin [22]. Fries et al. [23] have also developed hybrid implicit–explicit approaches that combine the
advantages of the aforementioned methods.

In the context of embedded finite element methods, Oliver et al. [24] developed an alternate implicit strategy that
solves a Laplace equation with an anisotropic conductivity tensor as a global crack-tracking methodology. In this
methodology, all possible crack paths are tracked at once through a nodally defined propagation field. Any given
crack then corresponds to an iso-surface value of this field and is easily identified. The idea is remarkably simple yet
retains all the advantages associated with the level-set methods and is arguably more suited to being integrated in an
existing general purpose finite element framework. Since the original paper by Oliver et al. [24], the approach has been
extensively used in both the E-FEM and X-FEM frameworks in several studies (see [25–32]). In 2D, a comparison
between the global and explicit crack tracking approaches is presented in Dumstorff and Meschke [33,34].

Jäger et al. [30–32] in a series of articles present a thorough analysis of the global crack tracking approach when
used in conjunction with the phantom node method to model crack propagation in 3D. They compare and contrast
the method’s performance with the alternatives available and highlight the method’s promise to model arbitrary crack
propagation problems in 3D. However, they also report that the results of the global approach are sensitive to the
Dirichlet boundary conditions applied to the crack-tracking problem. In Jäger et al. [32], they propose geometry-
based, and mesh-based strategies to enforce Dirichlet boundary conditions to circumvent this sensitivity.

In the current work, we revisit this sensitivity analysis and demonstrate the spurious behavior that could result for
certain choices of Dirichlet boundary conditions for the global crack-tracking method. To resolve this difficulty, we
propose an alternative approach that solves the anisotropic Laplace equation in a more localized domain just ahead
of the crack front. It is noteworthy that similar ideas have been proposed earlier in Feist and Hofstetter [26] and
Armero and Kim [27]. In the Partial Domain Tracking Algorithm of Feist and Hofstetter [26], the crack-tracking
problem is solved for a subset of the domain that is potentially intersected by a crack. Armero and Kim [27] propose
an element local solution where the Laplace problem is solved for one front element at a time. However, the approach
presented here is distinct for two reasons (a) we demonstrate that a local solution is required not just from an efficiency
perspective but also to prevent spurious crack path, and (b) the local solution procedure we are advocating involves all
elements just ahead of the crack front unlike either of the methods described above. Finally, while we use the Hansbo
method [3] to enhance the kinematics of the elements intersected by the discontinuity, the crack-tracking approach
presented here is equally applicable to both the X-FEM and E-FEM techniques.
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