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Abstract

The Navier–Stokes viscous fluxes are a well-known viscous regularization of the Euler equations. However, since these fluxes
do not add any viscosity to the mass equation, the positivity of density is violated. This paper investigates a new class of viscous
regularization of the Euler equations, which was recently proposed by Guermond & Popov (2014). In contrast to the Navier–Stokes
fluxes, the new regularization adds a viscous term to the mass equation. Since non-physical viscous terms are used, it is important
to show that the exact solution’s properties, such as the location of shocks, contact and rarefaction waves are not violated. The
present study concerns a careful numerical investigation of the new viscous regularization in a number of well-known 1D and 2D
benchmark problems. Also, a direct numerical comparison with respect to the physical Navier–Stokes regularization is shown.
The numerical tests show that the entropy viscosity method can achieve high order accuracy for any polynomial degrees. Detailed
algorithms for the implementation of a slip wall boundary condition are presented in a weak and a strong form.
c⃝ 2016 Published by Elsevier B.V.
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1. Introduction

One of the big challenges in Computational Fluid Dynamics is to design and implement efficient high-order
accurate numerical methods for approximating nonlinear hyperbolic systems of conservation laws. Since high order
discretizations produce spurious oscillations in shock regions, nonlinear stabilization techniques are needed to avoid
or control these oscillations. There exists a large class of methods addressing the question of instabilities of high-order
methods and most of them rely on flux/slope limiters. The design of limiters is not an easy task, especially in the case
of unstructured meshes. One of the traditional ways of solving the entropy solution of conservation laws consists
in adding an artificial viscosity term: a mesh dependent parabolic operator. This approach has been introduced by
Von Neumann and Richtmyer in 50s for the numerical approximation of conservation laws. The classical artificial
viscosity term is constructed to be proportional to the gradient of the solution, which loses regularity near shock
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and sharp discontinuities. To overcome this issue, a residual based stabilization term is used in Streamline Upwind
Petrov–Galerkin schemes (SUPG) by Hughes and Mallet [1]. Later, Johnson et al. added an isotropic residual based
artificial viscosity to SUPG [2] to obtain the convergence to the unique entropy solution. Recently, it has been shown
in [3] that Streamline Diffusion terms are not necessary for the method to converge. The nonlinear isotropic viscosity
is the main ingredient for the L∞-bound and the convergence. Dropping Streamline Diffusion terms, simplifies the
scheme significantly and there will be no demand to keep the method implicit, see e.g., [4] and [5] where the residual
based artificial viscosity method is successfully applied for systems of compressible Euler equations using explicit
Runge–Kutta methods.

In practice the nonlinear artificial viscosity is constructed locally in each cell, which may introduce nonphysical
oscillations in the solution. The work by Barter and Darmofal [6] and Reisner et al. [7] constructs a smoother
variation of artificial viscosity by solving additional scalar reaction–diffusion equation. This approach removes small
nonphysical oscillations introduced by non-smooth viscosity and does not pollute the solution in the downstream
region.

The so-called entropy viscosity method was first introduced by Guermond et al. [8,9], where the diffusive coefficient
is constructed using the entropy residual. The key feature of the entropy viscosity method is that the amount of
artificial viscosity it introduces, is determined by the size of the entropy residual. Scalar conservation equations have
infinitely many entropy pairs and all physical systems have at least one entropy function satisfying an auxiliary entropy
equation/inequality. The entropy “equation” is an equation only in the regions where the solution is smooth and it
becomes an inequality in the shock regions. This inequality acts as a selection principle for choosing the physically
relevant solution. The amount of violation of the entropy equation is called entropy production or entropy residual.
The main idea is that there is a large entropy production in strong shocks (it can be proved in simple cases that the
entropy production is a Dirac measure supported in shocks) which then activates the entropy viscosity wherever a
shock or a discontinuity is traced. In this paper, the entropy viscosity is constructed on the finite element nodes rather
than on the cells. This definition of the viscosity turns out to be more accurate especially for higher polynomial spaces.

Physics-based viscous fluxes or Navier–Stokes viscous terms are widely used in the literature in numerical
approximations of compressible Euler equations. For instance, we refer to [10,6,11] for discontinuous Galerkin,
[9,12,13,4] for continuous Galerkin and [14,5] for spectral element methods, where the artificial viscosity terms are
constructed via physics based viscosity. In above-mentioned references, several high-order numerical algorithms for
the construction of artificial viscosity coefficient are proposed and many realistic flow problems in different physics
are solved.

However, since the Navier–Stokes fluxes do not involve any viscosity in the mass equation, the solution suffers
from the so-called Gibbs phenomenon and introduces dissipation errors when using non-smooth initial data: or, more
precisely, the so-called positivity property of density cannot be guarantied. By constructing very simple flow scenarios
one can show that Navier–Stokes fluxes violate the positivity properties of the density and internal energy, and do not
satisfy entropy inequalities, see [15, Sec 2.4.]. These theoretical findings question the usage of the Navier–Stokes
fluxes to regularize the Euler equations. Recently, a general class of viscous regularization of the Euler equations,
that satisfy all above-mentioned thermodynamic properties, was introduced by Guermond and Popov [15], which is
coined as Guermond–Popov fluxes in this paper.

In [16], the Guermond–Popov fluxes are used to solve compressible flow in various speeds for linear finite element
approximation. The main goal of this paper is to investigate the Guermond–Popov fluxes numerically in continuous
finite element setting in arbitrary polynomial degrees and space dimensions. Since, this is an alternative to the standard
physics based viscous terms, it is important to show at least numerically that the method converges to the entropy
solution. For instance, computing correctly the position of shocks, contact discontinuities and rarefaction waves are
one of the main requirements that need to be assessed.

Most applications involving the compressible Euler system require to impose the so-called slip boundary condition,
i.e., normal velocity should vanish on the boundary. This boundary condition is challenging to implement for general
complex geometries. In this paper two different approaches to impose this boundary condition are discussed, namely
weakly and strongly, for compressible flows and compare their performance using a realistic flow problem. The strong
implementation of slip boundary condition for incompressible flow was reported earlier in [17] and [18].

The problem formulation is stated in Section 2. Next, Section 3 recalls the standard Navier–Stokes fluxes and
introduces the Guermond–Popov regularization, together with the finite element space discretization and the time
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