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Optimal Reduction of Numerical Dispersion for Wave Propagation Problems.
Part 1: Application to 1-D Isogeometric Elements.

A. Idesman*

Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409-1021, USA

Abstract

A numerical technique with the optimal coefficients of the stencil equation has been suggested. Based on
this approach, new high-order isogeometric elements with the reduced dispersion error have been developed
for wave propagation problems in the 1-D case. By the modification of the mass and stiffness matrices, the
order of the dispersion error is improved from order 2p (the conventional elements) to order 4p (the new
elements) where p is the order of the polynomial approximations. It was shown that the new approach yields
the maximum order of the dispersion error for the stencil equations related to the high-order isogeometric
elements. The analysis of the dispersion error of the high-order isogeometric elements with the lumped mass
matrix has also shown that independent of the procedures for the calculation of the lumped mass matrix, the
second order of the dispersion error cannot be improved with the conventional stiffness matrix. However,
the dispersion error for the lumped mass matrix can be improved from the second order to order 2p by the
modification of the stiffness matrix. The numerical examples confirm the computational efficiency of the
new high-order isogeometric elements with reduced dispersion. We have also showed that numerical results
obtained by the new and conventional high-order isogeometric elements may include spurious oscillations
due to the dispersion error. These oscillations can be quantified and filtered by the two-stage time-integration
technique recently developed in our papers. The approach developed in the paper can be directly applied to
other space-discretization techniques with similar stencil equations.
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In the paper the reduction of the numerical dispersion error for wave propagation problems with the
application to isogeometric elements in the 1-D case (Part 1) and the 2-D case (Part 2; see [1]) is considered.
Wave propagation in an isotropic homogeneous medium is described by the following scalar wave equation
in domain Ω:

∂2u
∂t2
− c2∇2u = 0 , (1)

with the boundary conditions nnn · 5u = g1 on Γt and u = g2 on Γu, and the initial conditions u(xxx, t = 0) = g3,
v(xxx, t = 0) = g4 in Ω. Here, u is the field variable, v = u̇ is the velocity, c is the wave velocity, t is the time, Γt

and Γu denote the natural and essential boundaries, gi (i = 1, 2, 3, 4) are the given functions, nnn is the outward
unit normal on Γt. The application of the continuous Galerkin approach and the space discretization (e.g.,
the finite elements, spectral elements, isogeometric elements; see [2, 3, 4] and others) to Eq. (1) leads to a
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