Accepted Manuscript

Numerical investigation of forced convective heat transfer of Fe₃O₄-water nanofluid in presence of external magnetic source

M. Sheikholeslami, M. Barzegar Gerdroodbary, D.D. Ganji

PII: S0045-7825(16)30912-4

DOI: http://dx.doi.org/10.1016/j.cma.2016.11.021

Reference: CMA 11231

To appear in: Comput. Methods Appl. Mech. Engrg.

Received date: 11 August 2016 Revised date: 2 November 2016 Accepted date: 14 November 2016

Please cite this article as: M. Sheikholeslami, M.B. Gerdroodbary, D.D. Ganji, Numerical investigation of forced convective heat transfer of Fe₃O₄-water nanofluid in presence of external magnetic source, *Comput. Methods Appl. Mech. Engrg.* (2016), http://dx.doi.org/10.1016/j.cma.2016.11.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Numerical investigation of forced convective heat transfer of Fe_3O_4 -water nanofluid in presence of external magnetic source

M. Sheikholeslami, M. Barzegar Gerdroodbary¹, D.D. Ganji

Department of Mechanical Engineering, Babol University of Technology, Babol,

IRAN

Abstract

In this paper, the forced convective heat transfer of water- Fe3O4 nanofluid in an enclosure with moving and sinusoidal walls is investigated. New numerical method is chosen namely CVFEM. Influences of Reynolds, Hartmann numbers and volume fraction of Fe3O4 on hydrothermal characteristics are presented. Results indicated that temperature gradient is an enhancing function of lid velocity and volume fraction of Fe3O4 but it is a reducing function of Lorentz forces. Besides, heat transfer improvement augments with enhance of Reynolds number but it reduces with augment of Hartmann number.

Keywords: Nanofluid; Magnetic field; CVFEM; Sinusoidal wall; Lid driven.

Nomenclature

BMagnetic induction α Thermal diffusivity E_n Heat transfer enhancement $\Omega \& \Psi$ dimensionless vorticity & stream function E_c Eckert number Θ dimensionless temperature

¹Corresponding Author:

Email: mohsen.sheikholeslami@yahoo.com (M. Sheikholeslami), mbarzegarg@yahoo.com (M. Barzegar Gerdroodbary)

Download English Version:

https://daneshyari.com/en/article/4964183

Download Persian Version:

https://daneshyari.com/article/4964183

<u>Daneshyari.com</u>