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Highlights

• We present the first multigrid method for IgA in 2D with convergence rates which are provably robust with respect to the spline
degree.

• The method is based on a new smoother based on the mass matrix and including a boundary correction.
• Rigorous analysis of the multigrid method for a model problem, proving the robust convergence.
• The resulting method can be realized with optimal computational complexity.
• Numerical experiments demonstrate the robust behavior in practice.

Abstract

We consider geometric multigrid methods for the solution of linear systems arising from isogeometric discretizations of elliptic
partial differential equations. For classical finite elements, such methods are well known to be fast solvers showing optimal
convergence behavior. However, the naive application of multigrid to the isogeometric case results in significant deterioration
of the convergence rates if the spline degree is increased.

Recently, a robust approximation error estimate and a corresponding inverse inequality for B-splines of maximum smoothness
have been shown, both with constants independent of the spline degree. We use these results to construct multigrid solvers for
discretizations of two-dimensional problems based on tensor product B-splines with maximum smoothness which exhibit robust
convergence rates.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric Analysis (IgA), introduced by Hughes et al. [1], is an approach to the discretization of partial
differential equations (PDEs) which aims to bring geometric modeling and numerical simulation closer together. The
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fundamental idea is to use spaces of B-splines or non-uniform rational B-splines (NURBS) both for the geometric
description of the computational domain and as discretization spaces for the numerical solution of PDEs on such
domains. As for classical finite element methods (FEM), this leads to linear systems with large, sparse matrices. A
good approximation of the solution of the PDE requires sufficient refinement, which causes both the dimension and
the condition number of the stiffness matrix to grow. At least for problems on three-dimensional domains or the
space-time cylinder, the use of direct solvers does not seem feasible. The development of efficient linear solvers or
preconditioners for such linear systems is therefore essential.

For classical FEM, it is well-known that hierarchical methods, like multigrid and multilevel methods, are very
efficient and show optimal complexity, that is, the required number of iterations for reaching a fixed accuracy goal is
independent of the grid size. In this case, the overall computational complexity of the method grows only linearly with
the number of unknowns. For high-order FEM and hp-FEM using piecewise polynomials which are globally only in
C0, too, multigrid methods have been developed (see [2–4] and the references therein).

It seems natural to extend these methods to IgA, and several results in this direction can be found in the literature.
Multigrid methods for IgA based on classical concepts have been considered in [5–7], and a classical multilevel
method in [8]. An approach to local refinement in IgA based on a full multigrid method can be found in [9]. It has
been shown early on that a standard approach to constructing geometric multigrid solvers for IgA leads to methods
which are robust in the grid size [5]. However, it has been observed that the resulting convergence rates deteriorate
significantly when the spline degree is increased. Even for moderate choices like splines of degree four, too many
iterations are required for practical purposes.

Recently, in [10] some progress has been made by using a Richardson method preconditioned with the mass matrix
as a smoother (mass-Richardson smoother). The idea is to carry over the concept of operator preconditioning to
multigrid smoothing: here the (inverse of) the mass matrix can be understood as a Riesz isomorphism representing the
standard L2-norm, the Hilbert space where the classical multigrid convergence analysis is developed. Local Fourier
analysis indicates that a multigrid method equipped with such a smoother should show convergence rates that are
independent of both the grid size and the spline degree. However, numerical results indicate that the proposed method
is not robust in the spline degree in practice. This is due to boundary effects, which cannot be captured by local Fourier
analysis. Similar techniques have been used to construct symbol-based multigrid methods for IgA, see [11–13].

In the present paper, we take a closer look at the origin of these boundary effects and introduce a boundary
correction that deals with these effects. We prove that the multigrid method equipped with a properly corrected mass-
Richardson smoother converges robustly both in the grid size and the spline degree for one- and two-dimensional
problems. For the proof, we make use of the results of the recent paper [14], where robust approximation error
estimates and robust inverse estimates for splines of maximum smoothness have been shown. We present numerical
results that illustrate the theoretical results.

The bulk of our analysis is first carried out in the one-dimensional setting. While multigrid solvers are typically
not interesting in this setting from a practical point of view, the tensor product structure of the spline spaces com-
monly used in IgA lends itself very well to first analyzing the one-dimensional case and then extending the results
into higher dimensions. In the present work, we extend the ideas from the one-dimensional to the two-dimensional
case and obtain a robust and efficiently realizable smoother for that setting. The three- and higher-dimensional case is
left for future work.

In the present paper, we restrict ourselves to the case of maximum smoothness C p−1 for a polynomial degree
p, while mentioning that multigrid methods for high-order or hp-FEM can be used to treat the case of minimum
smoothness C0, see [2–4] and the references therein. (No fully robust method in p appears to be known in the FEM
literature, but methods which have only mild dependence on p are available.) The development of robust multigrid
methods for intermediate cases has to be left for future work.

We mention that efforts have also been made to apply domain decomposition solvers to isogeometric discretizations
in order to solve them efficiently. A domain decomposition solver called IETI based on the ideas of the finite element
tearing/interconnecting (FETI) method has been proposed in [15]. An analysis of overlapping Schwarz methods for
isogeometric discretizations is given in [16]. A BDDC domain decomposition preconditioner for IgA has been pro-
posed in [17], and a BDDC preconditioner with deluxe scaling in [18]. We do not view our multigrid method as being
in competition with these methods; instead we consider it a candidate for an efficient local solver. In our view, large,
multi-patch IgA problems should be tackled with a domain decomposition approach, and the local patch problems
which arise from the decomposition should be solved with a fast solver such as our geometric multigrid method.
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