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Highlights

• An isogeometric analysis technique based on manifold basis functions is proposed.
• Basis functions are constructed by blending patchwise local approximants.
• High order smoothness and approximation are achieved on irregular quadrilateral meshes.
• Near optimal finite element convergence is obtained for second and fourth order PDEs.

Abstract

We present an isogeometric analysis technique that builds on manifold-based smooth basis functions for geometric modelling
and analysis. Manifold-based surface construction techniques are well known in geometric modelling and a number of variants
exist. Common to most is the concept of constructing a smooth surface by blending together overlapping patches (or, charts),
as in differential geometry description of manifolds. Each patch on the surface has a corresponding planar patch with a smooth
one-to-one mapping onto the surface. In our implementation, manifold techniques are combined with conformal parameterisations
and the partition-of-unity method for deriving smooth basis functions on unstructured quadrilateral meshes. Each vertex and its
adjacent elements on the surface control mesh have a corresponding planar patch of elements. The star-shaped planar patch with
congruent wedge-shaped elements is smoothly parameterised with copies of a conformally mapped unit square. The conformal
maps can be easily inverted in order to compute the transition functions between the different planar patches that have an overlap
on the surface. On the collection of star-shaped planar patches the partition of unity method is used for approximation. The smooth
partition of unity, or blending functions, are assembled from tensor-product b-spline segments defined on a unit square. On each
patch a polynomial with a prescribed degree is used as a local approximant. In order to obtain a mesh-based approximation scheme
the coefficients of the local approximants are expressed in dependence of vertex coefficients. This yields a basis function for each
vertex of the mesh which is smooth and non-zero over a vertex and its adjacent elements. Our numerical simulations indicate the
optimal convergence of the resulting approximation scheme for Poisson problems and near optimal convergence for thin-plate and
thin-shell problems discretised with structured and unstructured quadrilateral meshes.
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1. Introduction

The interoperability limitation of Computer Aided Design (CAD) and Finite Element Analysis (FEA) systems has
become one of the major bottlenecks in simulation-based design. CAD and FEA are inherently incompatible because
they use, for historical reasons, different mathematical representations. As advocated in isogeometric analysis the
use of identical basis functions for CAD and FEA can facilitate their integration. Today most of the research on
isogeometric analysis focuses on NURBS [1,2] and the related T-splines [3] and subdivision basis functions [4].
The inherent tensor-product structure of NURBS means that additional techniques are required for geometries that are
composed out of several NURBS patches. Specifically, around extraordinary (or irregular) points where the number of
patches that join together is different than four, i.e. v ≠ 4, alternative techniques are necessary to maintain smoothness.
One prevalent approach in geometric design is to introduce additional higher order patches around the extraordinary
point and to ensure that all patches match up Gk continuously at their boundaries. Gk refers to the notion of geometric
continuity and, for instance, G1 implying tangent plane continuity. As first pointed out by Groisser et al. [5] and later
by Kapl et al. [6], in isogeometric analysis Gk leads to Ck continuity because the geometry and field variables are
interpolated with the same basis functions. The utility of Gk constructions in isogeometric analysis with NURBS has
recently been investigated in a number of papers [7–10]. Gk constructions have also been explored in the context of
isogeometric analysis with T-splines [11]. A different approach for dealing with extraordinary points is provided by
subdivision surfaces. The neighbourhood of the extraordinary point is replaced by a sequence of nested Ck continuous
patches which join C1 continuously at the point itself [12,13]. Subdivision basis functions for finite element analysis
have originally been proposed in [14] and have been more intensely studied in a number of recent papers [15–17].
The Gk constructions known from geometric design and subdivision basis functions usually do not lead to optimally
convergent finite elements. The development of Gk constructions that yield optimal convergence rates is currently an
active area of research [6,9,10].

We introduce in this paper an isogeometric analysis technique that builds on manifold-based basis functions for
geometric modelling and analysis. As known from differential geometry, manifolds provide a rigorous framework for
describing and analysing surfaces with arbitrary topology, see [18,19]. Manifold techniques for mesh-based construc-
tion of smooth Ck continuous surfaces were first introduced by Grimm et al. [20]. Other mesh-based manifold con-
structions have later been proposed, e.g., in [21–24]. In all these approaches, a manifold surface in Euclidean space R3

is obtained by mapping and blending together planar patches from R2. In the resulting approximation scheme, similar
to splines, a Ck continuous surface is described with a quadrilateral or triangular control mesh and each vertex has
a corresponding basis function with a local support, see Fig. 1. In contrast to the aforementioned Gk constructions,
which rely on matching up separate patches, in the manifold-based technique considered in this paper a Ck continu-
ous surface is created by smoothly blending of overlapping patches. The idea of blending surfaces from overlapping
patches is a common theme in geometric modelling and has been used, for instance, for increasing the smoothness
of subdivision surfaces around the extraordinary vertices [25–27] or (meshfree) point-based surface processing [28,
29]. In Millán et al. [30,31] point-based surface blending techniques have been used for meshfree thin-shell analysis.
There are also mesh-based surface constructions that use manifold techniques, but do not rely on smooth blending of
patches, see, e.g., [32,33].

In the present work we follow Ying and Zorin [22] and construct smooth basis functions by combining manifold
techniques with conformal parameterisations and the partition of unity method. The control mesh consists of
quadrilateral elements with some extraordinary vertices (i.e. v ≠ 4 for some non-boundary vertices) and the
construction gives one basis function for each vertex. The first step is to assign each vertex of the control mesh and its
adjacent elements a planar sub-mesh with the same connectivity. The sub-meshes serve as control meshes for planar
surface patches, which can be understood as parameter spaces for basis functions. For Ck continuous basis functions
the planar patches have to have a Ck smooth parameterisation. Although other choices are conceivable, the patches are
parameterised using conformal (angle-preserving) maps. Since each surface point is represented on several patches,
transition functions composed of conformal maps are used to navigate between adjacent patches. In the second step
of the construction, on each planar patch the conventional partition of unity method (PUM) of Melenk et al. [34,
35] is used for constructing basis functions. According to PUM, the basis functions are the product of a partition
of unity function and a patch specific polynomial approximant. In computer graphics literature the partition of unity
function and the patch specific polynomial basis are usually referred to as the blending function and the embedding
function, respectively. We use as blending functions b-splines that have zero value and k zero derivatives at the patch
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