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a  b  s  t  r  a  c  t

A  regularity  model-based  multiobjective  estimation  of distribution  algorithm  (RM-MEDA)  has  been  pro-
posed for  solving  continuous  multiobjective  optimization  problems  with  variable  linkages.  RM-MEDA  is
a kind  of estimation  of distribution  algorithms  and,  therefore,  modeling  plays  a critical  role.  In  RM-MEDA,
the population  is  split  into  several  clusters  to build  the  model.  Moreover,  the  fixed  number  of  clusters
is  recommended  in  RM-MEDA  when  solving  different  kinds  of problems.  However,  based  on our exper-
iments, we  find  that  the  number  of  clusters  is problem-dependent  and  has  a  significant  effect  on  the
performance  of RM-MEDA.  Motivated  by  the  above  observation,  in  this  paper  we improve  the  clustering
process  and  propose  a  reducing  redundant  cluster  operator  (RRCO)  to  build  more  precise  model  during
the evolution.  By  combining  RRCO  with  RM-MEDA,  we  present  an  improved  version  of  RM-MEDA,  named
IRM-MEDA.  In  this  paper, we  also construct  four  additional  continuous  multiobjective  optimization  test
instances.  The  experimental  results  have  shown  that  IRM-MEDA  outperforms  RM-MEDA  in  terms  of  effi-
ciency and  effectiveness.  In particular,  IRM-MEDA  performs  on  average  31.67% faster  than  RM-MEDA.

©  2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Many optimization problems involve not one but several objec-
tives which should be optimized simultaneously. This kind of
problems is considered as multiobjective optimization problems
(MOPs). In this paper, we consider the following continuous MOPs:

minimize �y = �f (�x) = (f1(�x), f2(�x), . . . , fm(�x)) (1)

where �x = (x1, . . . , xn) ∈ X ⊆ Rn is the decision vector, X is the deci-
sion space, �y∈Y ⊆ Rm is the objective vector, and Y is the objective
space.

There are some basic definitions in multiobjective optimization,
which are introduced as follows.

Definition 1. Given two decision vectors �a = (a1, . . . , an) and �b =
(b1, . . . , bn), if ∀i ∈ {1, . . .,  m}  , fi(�a) ≤ fi(�b) and ∃j ∈ {1, . . .,  m} , fj(�a) <

fj(�b), we say �a Pareto dominates �b,  denoted as �a  ≺ �b.

Definition 2. A decision vector �x ∈ X is called Pareto optimal solu-
tion if there does not exist another decision vector �x′ ∈ X such that
�x′ ≺ �x.
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Definition 3. The Pareto set (PS) is the set of all the Pareto optimal
solutions:

PS = {�x ∈ X|¬∃�x′ ∈ X, �x′ ≺ �x}  (2)

The solutions in the PS are also called nondominated solutions.

Definition 4. The Pareto front (PF)  is the set of the objective vectors
of all the Pareto optimal solutions:

PF = {�f (�x)|�x∈ PS}  (3)

For MOPs, in most cases, we cannot find a single solution to
optimize all the objectives at the same time. Therefore, we have
to balance them and find a set of optimal tradeoffs, i.e., Pareto set
(PS) in the decision space and Pareto front (PF)  in the objective space,
respectively. Since evolutionary algorithms (EAs) deal with a group
of candidate solutions simultaneously, it seems to be natural to
use EAs for finding a group of Pareto optimal solutions when solv-
ing MOPs. Vector evaluation genetic algorithm (VEGA), introduced
by Schaffer [1] in 1980s, is the first actual implementation of EAs
to solve MOPs. After that, a considerable number of multiobjec-
tive evolutionary algorithms (MOEAs) have been proposed due to
increasing interest in solving MOPs by EAs.

The development of MOEAs can be briefly divided into three
generations [2,3]. In the first generation of MOEAs, Pareto rank-
ing and fitness sharing are the most common techniques adopted
by MOEAs. There are some paradigms in this generation, for
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example: nondominated sorting genetic algorithm (NSGA), pro-
posed by Srinivas and Deb [4],  is based on several layers of
classifications of the individuals as suggested by Goldberg [5] and
uses crowding distance to maintain the diversity of the popula-
tion. Niched-Pareto genetic algorithm (NPGA), proposed by Horn
et al. [6],  employs tournament selection based on Pareto dominance
and fitness sharing to keep the diversity. Fonseca and Fleming [7]
introduced a multiobjective genetic algorithm (MOGA).

The second generation of MOEAs is characterized by the elitism
preservation, which usually stores the nondominated individuals
into a predefined archive (also called external population). It is
necessary to note that incorporating the elitism into MOEAs can
facilitate the convergence of the population. Zitzler and Thiele [8]
proposed strength Pareto EA (SPEA), which uses an archive to store
the nondominated solutions found so far and adopts clustering
to prune the archive if the number of nondominated individuals
in the archive exceeds a predefined value. Zitzler et al. [9] also
proposed an improved version of SPEA, referred as SPEA2. Com-
pared with SPEA, SPEA2 has the following three properties: (1)
a new fitness assignment strategy, (2) a density estimation tech-
nique, and (3) a novel archive truncation method. Knowles and
Corne [10] presented Pareto archive evolutionary strategy (PAES),
which uses (1 + 1)-ES to generate offspring. In PAES, the offspring
is compared with the parent and the previously archived non-
dominated individuals for survival. Moreover, PAES divides the
objective space into grids, the aim of which is to maintain the
diversity of the population. Inspired by PAES, Corne et al. further
developed PESA [11] and PESA-II [12]. Deb et al. [13] proposed
an improved version of NSGA, called NSGA-II, by incorporating a
fast nondominated sorting approach and a crowding-comparison
approach.

In the current research, which belongs to the third gen-
eration of MOEAs, some new dominance concepts other than
traditional Pareto dominance have been introduced. For instance,
Laumanns et al. [14] introduced ε-dominance. Hernández-Díaz
et al. [15] proposed an adaptive ε-dominance, which is an improve-
ment of the original ε-dominance [14]. Ben Said et al. [16]
proposed r-dominance for interactive evolutionary multi-criteria
decision making. Brockoff and Zitzler [17] proposed a local dom-
inance scheme to reduce objective dimensionality. In addition,
some researchers combined traditional weight vector based tech-
niques with EAs to deal with MOPs [18–21].  Recently, Zhang
and Li [22] proposed a novel MOEA based on decomposition,
called MOEA/D, which converts MOPs into a set of scalar opti-
mization subproblems. Moreover, MOEA/D utilizes the neighbor
information to produce offspring and optimize the subproblems
simultaneously.

Many attempts have also been made to improve the per-
formance of MOEAs by making use of different kinds of EAs
as well as swarm intelligence. For example, Coello Coello et al.
[23] incorporated Pareto dominance into particle swarm opti-
mization for solving MOPs. Li and Zhang [24] proposed a new
version of MOEA/D [22] based on differential evolution. Igel et al.
[25] developed a variant of covariance matrix adaptation evo-
lution strategy (CMA-ES) [26] for multiobjective optimization.
Ghoseiria and Nadjari [27] presented an algorithm based on
multiobjective ant colony optimization to solve the bi-objective
shortest path problem. Jamuna and Swarup [28] proposed a
multiobjective biogeography based optimization algorithm to
design optimal placement of phasor measurement units. Zhang
[29] proposed an immune optimization algorithm for dealing
with constrained nonlinear multiobjective optimization prob-
lems.

Recently, indicator-based MOEAs have also been actively
researched in the community of evolutionary multiobjective opti-
mization [30,31].

It can be induced from the Karush–Kuhn–Tucker condition
that the PS of a continuous MOP  is a (m−1)-dimensional piece-
wise continuous manifold in the decision space [32,33], where
m is the number of objectives. Thus, for the continuous biob-
jective optimization problems (i.e., m = 2), the PS is a piecewise
continuous curve; and for the continuous triobjective optimiza-
tion problems (i.e., m = 3), the PS is a piecewise continuous 2-D
surface.

Based on the above regularity, Zhang et al. [34] proposed
a regularity model-based multiobjective estimation of distribu-
tion algorithm, referred as RM-MEDA. As a kind of estimation of
distribution algorithms (EDAs) [35], RM-MEDA employs the (m−1)-
dimensional local principal component analysis ((m−1)-D local
PCA) [36] to build the model of the PS in the decision space. The
(m−1)-D local PCA is a locally linear approach to nonlinear dimen-
sion reduction, which can construct local models, each pertaining
to a different disjoint region of the data space. In RM-MEDA, firstly,
the (m−1)-D local PCA divides the population into K (K is a con-
stant integer) disjoint clusters and computes the central point and
principal component of each cluster. Afterward, one model is built
based on the corresponding central point and principal compo-
nent for each cluster. The primary aim of modeling in RM-MEDA
is to approximate one of the pieces of the PS by making use of
the solutions in one cluster. Ideally, if the number of clusters K is
equal to the number of the pieces of the PS,  each piece of the PS
can be approximated by one cluster. In this case, a precise model
may  be built and the performance of RM-MEDA may  be excellent.
However, if the number of clusters K is not equal to the number
of the pieces of the PS;  needless to say, the model is not pre-
cise.

Since we  have no priori knowledge about the number of the
pieces of the PS for a MOP  at hand, it is very difficult to deter-
mine a reasonable value for K. Moreover, the setting of K is
usually problem-dependent. In particular, based on our experi-
ments, this parameter has a significant effect on the performance
of RM-MEDA. Since K is fixed to 5 in RM-MEDA, this setting
might not be very effective for different kinds of MOPs. In order
to overcome the above drawback of RM-MEDA, we design a
reducing redundant cluster operator (RRCO) to enhance the mod-
eling precision of RM-MDEA. By integrating RRCO with RM-MEDA,
IRM-MEDA is derived. Extensive experiments have been conducted
to compare IRM-MEDA with its predecessor RM-MEDA on a set
of biobjective and triobjective test instances with variable link-
ages (note that variable linkages reflect the interactions among
the variables). The experimental results verify that the efficiency
and effectiveness of RM-MEDA can be significantly improved by
RRCO.

The rest of the paper is organized as follows. Section 2
briefly reviews RM-MEDA. The drawback of modeling in RM-
MEDA is discussed in Section 3. Section 4 presents the details
of RRCO. IRM-MEDA is described in Section 5. The experimental
results are reported in Section 6. Finally, Section 7 concludes this
paper.

2. Review of RM-MEDA

2.1. Framework

During the evolution, RM-MEDA maintains:

• a population Pt of N individuals: Pt = {�x1, . . . , �xN}, where t is the
generation number;

• their �f -values : �f (�x1), . . . , �f  (�xN).

RM-MEDA is implemented as follows:
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