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a b s t r a c t

Aquasi-incompressible hydrodynamic phase fieldmodel for flows of fluidmixtures of two incompressible
viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle,
which warrants the variational structure, the mass conservation and energy dissipation law. We recast
the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-
dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conser-
vation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization
scheme for the DAE system, where the mass conservation and the energy dissipation law are once again
preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally
energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in
another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show
the convergence property as well as the accuracy and efficiency of the new scheme.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fluid mixtures are abundant in nature as well as in industrial settings. A mixture of immiscible fluids tends to form a multiphase fluid
mixture with a well-separated phases, while a mixture of miscible fluids indeed yields a new well-mixed fluid. Hydrodynamic theories
employing both the sharp interface formulation and the diffuse interface formulation have been developed to describe hydrodynamics
in the complex fluid flow of immiscible multiphasic fluid mixtures. For immiscible multiphasic fluid flows, sharp interface models
assume that there exist infinitely thin interfacial material surfaces separating different phases in the mixture [1–3]. On the other hand,
diffuse interface models have been used to describe not only immiscible fluid flows but also flows of miscible fluid mixtures [4–7]. The
diffuse interface model is commonly called the phase field model today. The phase field approach yields a method to solve interfacial
problems, where instead of tracking the interface, a smooth phase variable is introduced [8], whose spatially varying transitional layer
represents the interface. Due to its simple numerical implementation compared with the one of sharp interface methods, the phase
field method has gained tremendous popularity recently in applications in life sciences [5,9–12], cell biology [12–17], biofilms [5–7],
cell adhesion and motility [12,14,18–21], cell membrane [22–26], tumor growth [10], materials science [27–29], fluid dynamics [2,30,31],
image processing [32–34], etc.

When phase field models are used to describe hydrodynamics of multiphasic fluid flows, one has to couple the phase variable with the
fluid flow to derive hydrodynamic phase fieldmodels.When the hydrodynamic phase fieldmodel is derived through a variational principle
coupled with the generalized Onsager principle [35–37], the governing hydrodynamic phase field system obeys an energy dissipation law,
i.e., themodel is dissipative. As a result, themodels are usually well-posed. The derivation procedure often serves as a guide for developing
energy stable numerical algorithms, where the numerical schemes preserve or at least respect the energy dissipation property in the
discrete (or semi-discrete) level.
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Here, we give a brief overview of the hydrodynamic phase field model for binary viscous fluid mixtures. For a binary fluid with
components A and B, we introduce a phase variable φ ∈ [0, 1] with φ the volume fraction of component A. The volume fraction of
component B is given by 1 − φ. 0 < φ < 1 denotes the interfacial region between the two pure phases: A and B. Consider a smooth
domain Ω ∈ R2, the free energy of the mixture system is given by

F [φ] =

∫
Ω

(γ1

2
|∇φ|

2
+ f (φ)

)
dx, (1.1)

where γ1 is a parameter measuring the strength of the conformational entropy and f (φ) is the bulk energy density. For example, for
immiscible binary fluids, one choice of the bulk energy density is given by a double well repulsive potential

f (φ) = γ2φ
2(1 − φ)2, (1.2)

where γ2 measures the strength of the repulsive potential. In order to control numerically φ ∈ (−ϵ, 1 + ϵ) for small positive number ϵ,
we modify the above bulk energy density (1.2) as

f (φ) = γ2
(
φ2(1 − φ)2 + f1(φ)

)
, (1.3)

where

f1(φ) =

{
0, φ ∈ [0, 1],
Nφ4(1 − φ)4, otherwise, (1.4)

and here N is a large enough positive number. This potential has up to third order continuous derivatives.
For miscible binary polymeric blends, f (φ) is given by the Flory–Huggins free energy density

f (φ) = γ2

(
φ

N1
lnφ +

(1 − φ)
N2

ln(1 − φ) + χφ(1 − φ)
)

, (1.5)

whereN1 andN2 are the polymerization index for the A and B phases, respectively,χ is themixing parameter, and γ2 measures the strength
of the bulk potential.

For a fluid mixture of two incompressible viscous fluids, we have derived the governing system of equations of the binary fluid mixture
in a hydrodynamic binary fluid model as follows using the generalized Onsager principle [38]

ρ(∂tv + v · ∇v) = −∇p + ∇ · τ − φ∇µ, (1.6a)
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∆µ, (1.6b)

∂tφ + ∇ · (φv) =
λ1λ2ρ2(ρ2 − ρ1)
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∆µ, (1.6c)

where ρ1,2 and λ1,2 are constant mass density and mobility coefficient of components A and B, respectively, ρ = ρ1φ + ρ2(1 − φ) is the
total mass density, v is the mass-average velocity, p is the hydrostatic pressure,

τ = 2ηD +

(
ν −

2η
3

)
tr(D)I (1.7)

is the viscous stress tensor with the shear viscosity η = η1φ + η2(1 − φ) and the bulk viscosity ν = ν1φ + ν2(1 − φ), D =
1
2 (∇v + ∇vT )

is the rate of strain tensor, µ =
δF
δφ

is the chemical potential given by µ = f ′(φ) − γ1∆φ. To ensure energy dissipation, η, ν − 2η/3 ≥ 0.
With suitable boundary conditions, the system (1.6) satisfies an energy dissipation law (see Section 2). This hydrodynamic phase field
model respects the mass conservation and the momentum conservation. The second equation does not yield ∇ · v = 0 if ρ1 ̸= ρ2.
So, the model is quasi-incompressible [30,39,40], in which the material density and the viscosity are variables depending on the phase
variable φ. The model is incompressible only when ρ1 = ρ2. An analogous model was derived for mass fractions [30]. We remark that
most of the hydrodynamic phase field models analyzed and computed so far either corresponding to the case ρ1 = ρ2 so that the model
is incompressible or given by some ad hoc models in which ∇ · v = 0 is assumed [41].

Given the dissipative property of the governing system of equations, one would like to have the numerical solver developed for the
system to possess an analogous energy dissipation law at the discrete level. A numerical scheme of this property is known as the energy
stable scheme. There have been quite a number of papers in the literature today discussing how to develop energy stable schemes for
phase field models when the models are dissipative. Here, we briefly recall some well-known strategies. The authors in [42–46] extended
the convex splitting technique originally proposed by [47] to several phase field models, where they split the energy into a difference of
two convex functions, allowing them to prove energy stability for some schemes and the uniqueness of week solutions. This strategy has
since been applied to the epitaxial model and crystal growth model etc. However, even though they can prove the scheme is uniquely
solvable, the scheme ends up with a fully nonlinear systems to solve, where one has to use Newton iterations or other nonlinear solvers
to solve it. On the other hand, the authors in [48,49] used the stabilizer approach to derive energy stable schemes for some phase field
models and later hydrodynamic phase field models [48,50–53], where they introduced an extra stabilizing term in the same order of
accuracy as the scheme, then they can prove energy stability for the schemes. The resultant schemes obtained this way are good in term
of its linearity, however, the coefficient for the stabilizer has to be determined empirically, which may lead to a large error. Recently,
an energy quadratization approach has been applied to develop linear energy stable schemes for a class of (hydrodynamic) phase field
models [54–61].

Another strategy for developing energy stable schemes for hydrodynamic phase field models is to develop spatial discretization to
preserve energy stability at the semi-discrete level in space first. Then, one applies conservative numerical schemes developed for time-
dependent ODEs to arrive at fully discretized schemes that preserve energy dissipation. We have developed such a second order scheme
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