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a b s t r a c t

We consider the possibility of using reweighting techniques in order to correct the breaking of unitarity
when twisted boundary conditions are imposed on valence fermions in simulations of lattice gauge
theories. We start by studying the properties of reweighting factors and their variances at tree-level. This
leads us to the introduction of a factorization for the fermionic reweighting determinant. In the numerical,
stochastic implementation of the method, we find that the effect of reweighting is negligible in the case
of large volumes but it is sizeable when the volumes are small and the twisting angles are large. More
importantly, we find that for un-improved Wilson fermions, and in small volumes, the dependence of
the critical quark mass on the twisting angle is quite pronounced and results in large violations of the
continuum dispersion relation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Simulations of field theories on discretized Euclidean lattices
are necessarily performed in a finite space–time volume. This
requires imposing boundary conditions on the fields and although
different choices have the correct infinite volume limit, the way
that is approached depends on the particular choice (see for exam-
ple the discussion in [1,2] for the case of lattice QED). The actual
setup may affect not only the physical results by finite volume
effects but also the algorithmic efficiency and sampling properties
of the simulations. Recent examples of the latter can be found
in [3] for the use of open boundary conditions in lattice QCD to
bypass the freezing of topology, and in [4] for the use of gener-
alized boundary conditions in order to exponentially improve the
signal to noise ratio in glueball correlation functions computed
in the pure gauge theory. When considering lattice QCD, (anti)-
periodic boundary conditions in (time)-space are usually imposed
on the fermionic fields. This leads to a quantization of the spatial
momenta in units of 2π/L with L the spatial extent of the lattice.
For the lowest non-zeromomentum to be around 100MeV, lattices
of about 12 fm extension are needed. This is still very demanding
from the computational point of view if at the same time one
wants to keep discretization effects under control, which typically
requires considering lattice spacings a of about 0.1 fm and below.
In addition, for several applications relevant for phenomenology,
it is desirable not only to reach small momenta, but also to have
a fine resolution of them. Examples include form factors, as those
describing the K → πℓν transition, the charge radius of the pion,
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and the hadronic vacuum polarization of the photon, relevant for
the muon g − 2 anomaly.

Twisted boundary conditions, first introduced in [5,6] offer a
way to continuously vary momenta in lattice QCD, and have in-
deed been used for all the computations mentioned above [7–9].
They have also been applied to the calculation of renormalization
factors in the RI-MOM scheme [10] and to the matching between
Heavy Quark Effective Theory and QCD using correlators defined
in the Schrödinger Functional [11]. Twisting amounts to imposing
periodic boundary conditions up to a phase (the twisting angle
θ ) for fermions in the spatial directions. In actual simulations,
the partially twisted setup is usually adopted, where twisting is
only applied in the valence sector whereas fermions in the sea
are kept periodic. This introduces a breaking of unitarity as a
boundary effect, which therefore is expected to disappear in the
infinite volume limit, as it has explicitly been checked using Chiral
Perturbation Theory in [12].

This suggests that reweighting techniques as those employed
in [13] for the case ofmass-reweighting could be used here in order
to change the periodicity conditions for fermions in the sea. We
will see in the following that the resulting reweighting factors are
ratios of fermionic determinants,which tend to the value one in the
infinite volume limit. Therefore, as mentioned above, if any effect
of unitarity violations can be seen, then that is expected to happen
in rather small volumes, where the reweighting factors (which
are extensive quantities) can be reliably computed and used as
correction factors if needed.

A preliminary account of the present studies appeared in [14].
The paper is organized as follows: in Section 2, we collect defini-
tions and details on the setup we used; in Section 3, we present
exact results obtained at tree-level. Those will turn out to be useful
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in optimizing the numerical techniques employed for the evalu-
ation of the reweighting factors and their variances. Simulation
parameters and Monte-Carlo results are presented in Section 4.
The pion and quark mass dependence on the twisting angle are
discussed in Section 5. Section 6 contains our conclusions.

2. Definitions and setup

The generic boundary conditions for matter fields in lattice
QCD formulated on a torus are nicely discussed in [12]. There it
is pointed out that it is sufficient to require that the action is single
valued on the torus, whereas the fields themselves do not need to
be. Periodicity conditions on the fermions can therefore be of the
form

Ψ
(
x + Lµµ̂

)
= VµΨ (x) , µ = 1, 2, 3, (2.1)

whereΨ is a flavor multiplet and Vµ represents a unitary transfor-
mation associated to a symmetry of the action. Similarly, for theΨ
field, one requires

Ψ
(
x + Lµµ̂

)
= Ψ (x) V †

µ , µ = 1, 2, 3. (2.2)

Considering now the generic values of the diagonal quark mass
matrix, one concludes that Vµ also has to be diagonal in flavor
space, i.e

ψ
(
x + Lµµ̂

)
= eiθµψ (x) , µ = 1, 2, 3 , (2.3)

where the twisting angles θµ ∈ [0, 2π ) have been introduced for
each flavor and ψ is now one component of the Ψ multiplet.

Equivalently, one can fix the fermionic fields to be periodic and
introduce a constant U(1) interaction with vanishing electric and
magnetic fields, vanishing electric potential but constant vector
potential [6,12]. In lattice gauge theories, such an interaction is
implemented by transforming the standard QCD links Uµ(x) in the
following way (setting a = 1):

Ũµ(x) =

{
eiθµ/LµUµ(x) , µ = 1, 2, 3
U0(x) , µ = 0. (2.4)

In order to see the equivalence, it is enough to observe that the
phase can be re-absorbed by re-writing the, now periodic,ψ fields
in terms of

ψ̃(x) = ei
−−→(
θ
L

)
x⃗
ψ(x) , (2.5)

and to notice that the ψ̃ are indeed periodic up to a phase, as
for Eq. (2.3). The spatial Fourier modes of the ⟨ψ̃(x)ψ̃(0)⟩ prop-

agator are of the shifted form ei
(
k⃗+ θ⃗

L

)
x⃗ with each component of

the vector k⃗ being an integer multiple of 2π/L (for the special
but rather typical case L1 = L2 = L3 = L). In this sense,
twisting allows to continuously varymomenta asmentioned in the
introduction. The corresponding amplitudes can be extracted from
the Fourier decomposition of the propagator ⟨ψ(x)ψ(0)⟩, which
satisfies periodic boundary conditions. In practice, SU(Nc) gauge
configurations are typically produced for one specific choice of
θ , and the angle is then varied only when computing the quark
propagators, which is cheaper in terms of CPU-time with respect
to the generation of configurations. As a consequence, the quark
propagators in the sea and valence sectors differ, which causes a
breaking of unitarity already at the perturbative level. This effect
however can be studied in a rather straightforward way, as done
here.

In the following, we will use the un-improved Wilson action,
with the links Uµ(x) replaced by the Ũµ(x) as in Eq. (2.4). This re-
placement clearly does not affect the plaquettes and therefore the
pure gauge term in the action. Only the covariant derivatives and

the Wilson term are modified. Hence, once the fermionic degrees
of freedom are integrated out on each SU(Nc) gauge background,
the θ-dependence from the sea sector is completely absorbed in
the fermionic determinant.

In order to apply reweighting techniques, let us imagine we
want to compute the value of some observables for one choice
of bare parameters B = {β ′,m′

1,m
′

2, . . . ,m
′
nf , θ

′
µ, . . .}, using the

configurations produced at a slightly different set of parameters
A = {β,m1,m2, . . . ,mnf , θµ, . . .}. To this end, one needs to
compute on each configuration of the A-ensemble the reweight-
ing factor WAB = PB/PA, which is the ratio of the two prob-
ability distributions and it is an extensive quantity, PA[U] =

e−SG[β,U]
∏nf

i=1 det (D[U, θ] + mi). In the last expression, we have
explicitly indicated the dependence of the Dirac operator on the
twisting angle. The expectation values on the B-ensemble can then
be expressed as

⟨O⟩B =
⟨ÕWAB⟩A

⟨WAB⟩A
, (2.6)

with Õ being the observable defined after Wick contractions, and
⟨. . . ⟩A indicates that expectation values have to be taken on the
A-ensemble. Specializing to the case where only the periodicity
angles of the fermionic boundary conditions are changed from one
bare set to the other, we obtain the following expression of the
reweighting factor:

Wθ = det
(
DW [U, θ]D−1

W [U, 0]
)

= det
(
DW [Ũ, 0]D−1

W [U, 0]
)
, (2.7)

where we have also chosen D to be DW , i.e., the massive Wilson
Dirac operator. Under certain conditions ratios of determinants
as those above can be estimated stochastically. In general, for a
normal matrix M whose eigenvalues have positive real parts, the
following representation of the determinant can be used [13]:

1
detM

=

∫
D [η] exp

(
−η†Mη

)
< ∞ ⇐⇒ Reλ (M) > 0. (2.8)

The positivity condition ensures that the integral converges. The
expression can clearly be evaluated stochastically. The distribution
p(η) of the vectors η is usually taken to be gaussian; in this case, the
determinant (or its inverse) can be written as

1
detM

=

⟨
e−η†Mη

p(η)

⟩
p(η)

=
1
Nη

Nη∑
k=0

e−η
†
k (M−1)ηk + O

(
1√
Nη

)
. (2.9)

It is straightforward to generalize the positivity condition above in
order to ensure the convergence of the stochastic estimates of all
Gaussianmoments. In the case of anHermitianmatrix, one obtains⟨
e−2η†Mη

p(η)2

⟩
p(η)

=

∫
D [η] exp

[
−η†(2M − 1)η

]
< ∞

⇐⇒ λ (M) >
1
2
,

...⟨
e−Nη†Mη

p(η)N

⟩
p(η)

=

∫
D [η] exp

[
−η†

[NM − (N − 1)1]η
]
< ∞

⇐⇒ λ (M)>
N − 1
N

−→
N→∞

1.

All eigenvalues should therefore be larger than unity. In particular,
in the numerical studies presented here, we will always consider
the square of the Hermitian version of the Wilson Dirac operator
Q = γ5DW , which is to say we consider the case of two degenerate
flavors.
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