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a b s t r a c t

KineticMonte Carlo (KMC) simulations are used to study long-time dynamics of awide variety of systems.
Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale
is inversely proportional to the simulated system size. A promising approach to resolving this issue is
the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This
paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-
dependent Hartree approximations, aswell as its scalable parallel implementation based on a dual linked-
list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024
Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system,
as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of
cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems
such as computational synthesis of new materials.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ever-increasing processing power of parallel computers [1]
is continuously extending the spatiotemporal scales of particle
simulations [2], where each particle could represent an atom in
molecular dynamics (MD) simulations or a human in agent-based
social simulations. Essential to extending the spatial scale is linear-
scaling algorithms based on spatial locality principles, in which
the computational complexity scales linearly with the number of
particles N [3–6]. A harder problem is to increase the time scale of
processes that can be simulated, due to the inherently sequential
nature of time as a result of causality [7]. In some cases, temporal
locality principles alleviate the sequential-time bottleneck in MD
simulations [2,4,6,8]. Namely, amany-particle system tends to stay
near a localminimum-energy configuration over a long duration of
time, which is bounded by a rare transition over short time period
to another minimum. In such a case, the transition state theory
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(TST) [9,10] uses a local equilibrium assumption to reformulate the
sequential long-time dynamics as computationally more efficient
parallel search for low-activation transition events [11–14], where
the rates of the events are computed from their activation barriers.

The most widely used simulation method based on TST is ki-
netic Monte Carlo (KMC) [15–20]. In KMC simulations, an event
to occur is stochastically selected from a database of events. The
simulated time progresses according to Poisson statistics, where
the time increment t at each KMC step is inversely proportional
to the sum of the rates of all possible events. Since the summed
rate grows as at least O(N), KMC simulations progress much more
slowly for larger systems, i.e., t = O(1/N). With an O(N) imple-
mentation of the computation for a single KMC step, therefore, the
computational complexity to simulate a physical time duration of
τ is O(N × τ/t) = O(N × τN) = O(N2). The conventional KMC
algorithm is thus not scalable for large N . Here, it should be noted
that single-step KMC computation can be performed in O(logN)
time instead of O(N) [21], or even faster if the types of possible
events are bounded as O(1) [22].

More efficient long-time simulation is possible because of the
spatiotemporal locality of activated events. Namely, they are usu-
ally localized not only temporally but also spatially [23]. This leads
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Fig. 1. Hemegroups in a dimer of decaheme cytochromes,where the Fe atomwithin
each heme is represented by a yellow sphere. Each of the two cytochromes (colored
magenta and cyan) contains 10 hemes.

to computationallymore efficient simulationmethods that concur-
rently sample multiple, spatially localized events [24–28]. In such
cases, event samplingmaybe enhanced by an ensemble-mean field
approach. For example, a time-dependent Hartree (TDH) approxi-
mation has been employed to sample the dynamics of a small key
subsystem within a large molecule [29]. Here, an ensemble of MD
simulations for the subsystem is embedded in an MD simulation
of the entire molecule, where the subsystem and the rest of the
molecule interact via an ensemble-mean field [29]. In the light of
the localized nature of atomistic events [23], we here introduce a
local transition-state (LTS) approximation, in conjunction with the
TDH approximation, into the KMC simulationmethod. This leads to
a divide-and-conquer strategy that simulates multiple events con-
currently based on spatial decomposition. The resulting simulation
method is equivalent to the synchronous parallel KMC (SPKMC)
method [25–28]. Furthermore, we introduce a dual linked-list
cell (DL2C) method to further reduce the computational cost. This
paper is organized as follows. Section 2 describes a derivation and
implementation of the SPKMC algorithm. Numerical results are
presented in Section 3, and Section 4 contains conclusions.

2. Methods

In this section, we present a new derivation of the synchronous
parallel kinetic Monte Carlo (SPKMC) algorithm and its imple-
mentation on parallel computers using a dual linked-list cell
(DL2C) method. As a concrete example, we use electron-transfer
(ET) dynamics between heme groups in a large network of cy-
tochromes [30,31]. (Heme is an organic compound called por-
phyrin that contains an iron (Fe) atom at its center.) Fig. 1 shows
a dimer of decaheme cytochromes and the heme groups in it. The
Fe atom in each heme can exist in either of the two valence states,
Fe2+ or Fe3+. Conversion of irons between Fe2+ and Fe3+ allows for
the hopping of electrons between adjacent hemes. KMC simulation
treats electron-hopping events in a network of N hemes, where a
heme site at position qi is labeled by index i ∈ {1, . . . ,N}. The
ith heme is either occupied by an electron (ni = 1 or reduced,
corresponding to Fe2+) or unoccupied (ni = 0 or oxidized, corre-
sponding to Fe3+), where ni is the electron occupation number of
the ith heme. The systemdynamics are characterized by (i) electron
hopping rates Wji from the ith heme to the jth heme for adjacent
(i, j) pairs, (ii) electron injection rate Wred into a selected entrance
heme ient, and (iii) electron-ejection rate Wox from an exit heme
iexit. In our work, Wji is computed from the positions of hemes,
qi and qj, and their precomputed free energies, Gi and Gj [30]. In
addition, Wji depends on the occupation numbers, ni and nj, since

an electron can hop from i to j only when ni = 1 and nj = 0. Due
to the exponential decay of the electron-hopping rate with respect
to the heme-pair distance, Wji = 0 when |qi − qj|> qcut, where
qcut ∼ 1 nm is a cutoff distance. The following discussion also
applies to other applications such as photoexcitation dynamics in
solar cells [20] and computational synthesis of newmaterials based
on chemical vapor decomposition and other techniques [19], as
long as an event is spatially localized within a cutoff distance.

2.1. Kinetic Monte Carlo simulation

To introduce a notation necessary for the derivation of the
SPKMC algorithm, Appendix A describes the conventional KMC
simulation method [15–20]. We initialize a KMC simulation by
emptying all heme sites and resetting the time to 0. At each KMC
step, one of the following events occurs: (i) an electron is injected
with rateWred if the entrance heme is unoccupied; (ii) an electron
is ejected with rate Wox if the exit heme is occupied; or (iii) an
electron hops from heme i to one of its nearest-neighbor hemes,
j, with rateWji if heme i is occupied and heme j is unoccupied. The
method for calculating the rates for the ET dynamics can be found
in Ref. [30]. KMC simulation consists of a time-stepping loop. Let e
be one of the possible events listed above, withWe being its rate, E
be the total number of possible events, and

W =
E∑

e=1

We (1)

be the sum of the rates of all possible events. At each KMC step, the
time is incremented by

t = − ln (ξ1) /W , (2)

where ξ1 is a uniform random number in the range [0,1]. The
probability of choosing a particular event is proportional to its rate,
and specific event e∗ is chosen such that

e∗ = min
e

{
e∑

c=1

Wc > Wξ2

}
, (3)

where ξ2 is another uniform random number in [0,1].

2.2. Synchronous parallel KMC algorithm

The standard KMC method in Section 2.1 is not scalable to
larger system sizes. The cumulative event rate W grows as O(N),
and accordingly the time scale of the simulation determined by
its inverse becomes progressively smaller in larger systems, as is
seen in Eq. (2). To overcome this scaling problem, we parallelize
KMC simulations in a divide-and-conquer (DC) fashion, using a
synchronous formulation and graph coloring to avoid conflicting
events [25–28]. To do so, we first introduce a local transition-state
(LTS) approximation, in which events outside a cutoff distance are
assumed to be statistically independent.We then introduce a time-
dependentHartree (TDH) approximation, i.e., the simulated system
is subdivided into spatially localized domains and local events in a
domain are sampled independently of those in the other domains.
Appendix B provides a formal derivation of the resulting SPKMC
algorithm.

Domain decomposition: The SPKMC algorithm partitions the
3-dimensional space ℜ3 into spatially localized domains ℜ3

d that
are mutually exclusive,

ℜ
3
=

⋃
d

ℜ
3
d; ℜ

3
d ∩ ℜ

3
d′ = ∅. (4)

For simplicity, we consider a simplemesh decomposition, inwhich
the total rectangular space is subdivided into domains of equal
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