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a b s t r a c t

The microscopic particle-in-cell (MicPIC) method was developed to model classical light–matter interac-
tion in strongly-coupled plasma systems. It effectively overcomes the limitations of the particle-in-cell
andmolecular dynamics techniques by combining them into a single, unified framework to solve for both
electromagnetic wave propagation and atomic-scale collision processes in a self-consistent treatment. Its
effective time complexity is O(N), where N is the number of model particles, which is ideal for studying
the dynamics of large ensembles. In this paper, we show that through massively parallel, distributed
computations, current implementations of the MicPIC approach can handle up to 1011 particles on an
IBM Blue Gene/Q computer with 65 536 physical cores. This allows modelling volumes of matter of
approximately 1 µm3 at solid gold density, opening a wealth of potential applications of MicPIC in
nanophotonics, diffractive X-ray imaging, and strong-field science.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

When intense laser light interacts with solid-density materials,
ionization occurs [1,2]. In the first (inner) ionization mechanism,
bound electrons are promoted to a conduction state where they
can freely move throughout the solid. In the (outer) ionization
stage, they gain enough energy to overcome the work function
and leave the material. While they are accelerated by the laser
field, electrons in the conduction state can also free further elec-
trons through laser-assisted impact ionization or share their en-
ergy with the lattice ions via electron–ion collisions [3,4]. This
results in a modification and/or destruction of the material, which
is of great interest for industrial and clinical applications, such
as laser surgery [5–7], thin-film deposition [8], laser cutting and
welding [9,10], and laser-writing of channels and waveguides in
solids [11,12]. Laser heating of electrons and ions lifts the quantum
degeneracy of solids and, to a good approximation, the particle
interactions and dynamics can be treated classically.

Modelling the laser-driven plasma dynamics created during
laser-induced material modification and machining processes
[13–16] presents researchers with the difficulty of resolving light–
matter interaction on both the microscopic and macroscopic
length scales. Microscopic phenomena require precise knowledge
of the properties and trajectories of individual particles, whereas
themacroscopic scale necessitates lengths large enough to account
for electromagnetic wave propagation effects. Given that the inter-
atomic distance in a solid-density material is on the order of an
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ångström and that typical laser wavelengths are in the extreme
ultraviolet (XUV, ∼ 100 nm) to the mid-infrared (MIR, a few µm)
range, bridging the microscopic and macroscopic realms requires
resolving roughly four orders of magnitude in length [17]. Fur-
thermore, a 1 µm3 volume of material at solid density contains
approximately 1010

− 1011 particles, depending on the material
composition. This presents a true challenge for computer mod-
elling. A massively parallel approach to the microscopic particle-
in-cell (MicPIC) method is currently the only avenue to meet all of
these requirements.

The simulation of particle systems has a history which dates
back to work on diffusion [18]. Classical treatment of systems
of interacting particles in more modern cases is typically done
using one of two most popular methods. The first such method,
molecular dynamics (MD), is well-suited to studying the dynamics
in systems with dimensions on the order of a few nanometres,
where the electrostatic approximation is justified. This involves
O
(
N2
)
operations (N being the number of simulation particles),

whereby each particle is subjected to the binary Coulomb force
from all the others. While this method has been shown to work
well for cluster nanoplasmas [19,20], chemical physics [21,22], and
materials science [23,24], it does not account for electromagnetic
radiation. The computational cost is also prohibitive on systems
consisting of more than ∼106 particles. The hierarchical tree [25]
and particle–particle/particle-mesh (P3M) [26] methods were de-
veloped to overcome this limitation but they also rely on the
electrostatic approximation. MD, tree, and P3M methods are thus
limited to simulate light–matter interaction in spatial domains
whose size is only a small fraction of the laser wavelength, where
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radiation propagation effects like source depletion, retardation,
and non-dipolar excitation can be neglected.

The secondmethod, Particle-in-cell (PIC), is a veteran in the field
of computational plasmaphysics. It is formally treated in theworks
of Eastwood and Hockney [26] and Birdsall and Langdon [27] (see
also [28]). It improves upon MD by being O(N) and by including
electromagnetic wave propagation explicitly. Charged particles
or ensembles thereof (superparticles) are imposed upon a grid
through the construction ofweighted charge and current densities,
used as sources in Maxwell equations. The electromagnetic field is
then time-evolved using the finite-difference time-domain (FDTD)
method [29]. Finally, the motion of the particles is computed with
the Lorentz force by interpolating the electromagnetic field at the
location of each particle. In PIC, particles do not interact directly,
but through the meshed electromagnetic field that contains all
the field contributions from the particles. The advantage of this
is the resulting O(N) scaling. However, a single PIC particle av-
erages over tens of thousands of physical particles and its size is
much larger than the atomic length scale. As a result, short range
interactions, such as two- and many-body collisions, and plasma
micro fields cannot be resolved adequately. Advanced PIC schemes
include statistical, Monte Carlo particle collision models based on
binary-collisions theories to account for the underestimated short-
range particle interactions [30–35]. Still, the applicability of these
methods is limited to simulating the dynamics of low-density,
near-collisionless plasmas.

The newer tool MicPIC [36,37,17] effectively combines the MD
and PIC approaches in a two-stage scheme in order to circumvent
the electrostatic approximation in the former and the lack of fine-
grained details in the latter. Large scale effects are treated with
the traditional PIC approach, where each particle corresponds to
an atom, ion, or electron. For computational efficiency the size of
the PIC particles is chosenmuch larger than the atomic length scale.
When particles come close to each other, the local electric field of
each PIC particle is corrected with a short-range electrostatic con-
tribution in the fashion of MD to account for the underestimated
part in PIC. The result is a fully electromagnetic simulationmethod
capable of accounting for collisions at the microscopic scale for
individual charged particles. Initially, this approach could handle a
maximum of ∼106 particles in serial runs [17,36,37]. In this paper,
we report the use of MicPIC for massively parallel simulations
with up to ∼1011 particles, opening new avenues for large-scale
modelling in nanophotonics, diffractive X-ray imaging, and strong-
field science.

The paper is organized as follows. First in Section 2, we build
on the approaches developed for PIC. The need to correct for short
range interactions is novel; in addition to PIC there is the need
to develop parallelization schemes for short range corrections.
We discuss how MicPIC incorporates distributed memory paral-
lelismwith short range force corrections for simulationswith large
numbers of processes. Next in Section 3, we present a theoretical
analysis of the expected scaling of MicPIC with respect to the
different simulation parameters. We follow up in Section 4 by
testing parallel MicPIC in different scenarios on mid and large
scale supercomputer systems to assess MicPIC’s strong and weak
parallel scaling characteristics, respectively. Final conclusions are
given in Section 5.

2. Method

Below, we present the important theoretical and numerical
aspects of the parallel MicPIC approach in four subsections. First,
we briefly discuss the theoretical approach to the MicPIC method
and how it expands upon PIC. The serial version of MicPIC was
discussed extensively in [17]. Next, we describe the MicPIC algo-
rithm with focus on those components that are parallelized. The

following section discusses thesemain components inmore detail,
including the numerical algorithms used in MicPIC to compute
forces, fields, and particle motion. The final section is dedicated to
how MicPIC is parallelized.

2.1. Theoretical approach

MicPIC is inspired by the particle–particle/particle-mesh (P3M)
approach. P3M interpolates long-range forces on a coarse-grained
mesh and later corrects the individual inter-particle forces for sep-
arations less than some cutoff value to shape the effective short-
range interactions [26]. The P3M technique was developed to solve
the Poisson equation, which applies to situations where the elec-
trostatic approximation is justified. It is thus equivalent to MD, but
with an O(N) scaling. MicPIC effectively extends the P3M scheme
by being fully electrodynamic. Electromagnetic radiation and long-
range particle interactions are taken care of by the PIC method
while short-range corrections to the local field of each particle is
performed through the use of a local, electrostatic MD approach,
applied only within a small cutoff radius as in P3M. Generalization
to fully relativistic short-range corrections is possible and subject
to future research.

To ensure smooth particle interactions withminimal numerical
noise, MicPIC’s particles are represented by Gaussian charge den-
sity distributions with identical, physical width w0. Therefore, the
charge distribution associated with the ith particle is

ρi
(
r⃗, w0

)
= qig

(r⃗ − r⃗i
 , w0

)
, (1)

where g
(
r⃗, w

)
= (1/π3/2w3) exp(−r⃗ · r⃗/w2) is a normalized

Gaussian function, and qi and r⃗i are the particle charge and position
vector, respectively. As emphasized in previous publications (see,
e.g., [36,37,17,38]), for charges in close encounters the physical
width parameter w0 emulates the screening of Coulomb interac-
tions associated with the effective shielding of Coulomb singular-
ities by quantum uncertainty and the finite width of the particle
wavefunctions.

The first level of the MicPIC method is identical with the PIC
method. For efficient long-range force calculations, numerical par-
ticles are represented on a coarse mesh by a wide charge density
distribution ρPIC

i = ρi
(
r⃗, wPIC

)
, with wPIC > w0. The total current

density distribution associated with the particle ensemble is then
defined as

j⃗PIC =

∑
i

ρPIC
i v⃗i, (2)

where v⃗i is the velocity vector of the ith particle. This current
density then acts as a source term in the microscopic Maxwell
equations. In MicPIC, the meshed electromagnetic fields obey the
microscopic Faraday and Maxwell–Ampère relations:

∇ × e⃗PIC = −∂t b⃗PIC (3)

∇ × b⃗PIC = µ0 j⃗PIC +
1
c2

∂t e⃗PIC . (4)

Ultimately, the PIC electromagnetic field acts back on the individ-
ual particles through the Lorentz force:

f⃗ PICi =

∫
ρPIC
i

(
e⃗PIC + v⃗i × b⃗PIC

)
d3r, (5)

which leads to new particle positions r⃗i and velocities v⃗i and, in
turn, to a new current via Eq (2). In f⃗ PICi , the ith particle feels the
effect of all the other particles through the electromagnetic field
induced by the total particle current j⃗PIC .

The numerical integration of Eqs (2)–(5) is self-consistent and
includes important collective wave propagation effects like scat-
tering, interference, retardation, and absorption. However, we
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