
Please cite this article in press as: M. Prausa, epsilon: A tool to find a canonical basis of master integrals, Computer Physics Communications (2017),
http://dx.doi.org/10.1016/j.cpc.2017.05.026.

Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

epsilon: A tool to find a canonical basis of master integrals✩

Mario Prausa
Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52056 Aachen, Germany

a r t i c l e i n f o

Article history:
Received 20 January 2017
Received in revised form 11 May 2017
Accepted 26 May 2017
Available online xxxx

Keywords:
Feynman integral
Canonical basis
Differential equation
Fuchsian form

a b s t r a c t

In 2013, Henn proposed a special basis for a certain class of master integrals, which are expressible in
terms of iterated integrals. In this basis, the master integrals obey a differential equation, where the right
hand side is proportional to ϵ in d = 4−2ϵ space–time dimensions. An algorithmic approach to find such
a basis was found by Lee. We present the tool epsilon, an efficient implementation of Lee’s algorithm
based on the Fermat computer algebra system as computational back end.
Program summary
Program Title: epsilon
Program Files doi: http://dx.doi.org/10.17632/j59sy5n729.1
Licensing provisions: GPLv3
Programming language: C++
Nature of problem: For a certain class of master integrals, a canonical basis can be found in which they
fulfill a differential equation with the right hand side proportional to ϵ. In such a basis the solution of
the master integrals in an ϵ-expansion becomes trivial. Unfortunately, the problem of finding a canonical
basis is challenging.
Solution method: Algorithm by Lee [1]
Restrictions: The normalization step of Lee’s algorithm will fail if the eigenvalues of the matrix residues
are not of the form a + bϵ with a, b ∈ Z. Multi-scale problems are not supported.

[1] R.N. Lee, JHEP 1504 (2015) 108 [arXiv:1411.0911 [hep-ph]].
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The perturbative treatment of quantum field theories leads quite naturally to the problem of evaluating a large number of multi-loop
Feynman diagrams. After a tensor reduction the Feynman diagrams can be expressed in an even larger number of scalar Feynman integrals
of the form∫

ddl1 . . .

∫
ddlL

1
Dn1
1 . . .DnN

N

, (1)

where L is the number of loops and d = 4 − 2ϵ the number of space–time dimensions in the context of dimensional regularization. The
denominators Di in (1) are usually of the form p2 − m2, where p is a linear combination of loop momenta and external momenta and m
some mass.

A standard technique nowadays is the usage of integration-by-parts identities [1,2] for the reduction of this large number of Feynman
integrals to a rather small set of so-called master integrals. These identities provide linear dependences between various Feynman
integrals, where the coefficients are rational functions in both the space–time dimension d and the kinematic variables of the problem.

Many methods were developed to solve these master integrals. For an overview see e.g. [3]. Among the most successful ones is the
method of differential equations which is also based on integration-by-parts reductions [4–6]. Recently, significant progress was made in
this method, when Henn conjectured the existence of a canonical basis for master integrals expressible in terms of iterated integrals [7].
In this basis the right hand side of the system of differential equations is proportional to ϵ = (4 − d)/2. If the boundary conditions are
known, the solution of the system of differential equations in an ϵ-series becomes trivial.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Two years ago, Lee proposed an algorithm to automate finding a canonical basis [8]. A first implementation for this algorithm was
presented in [9].

In this paper we present epsilon, a further implementation of Lee’s algorithm based on the Fermat[10] computer algebra system.
Our implementation utilizes the explicit dependence of the transformations used by Lee’s algorithm on the kinematic variable to reduce
the number of variables in intermediate steps. Another advantage of our implementation is the support of systems with singularities at
complex points using Fermat’s polymod capability.

In Section 2 we introduce some definitions and explain implementation details. In Section 3 the installation procedure and the usage
of epsilon is described. In Section 4 we give a non-trivial example of the usage based on a real three-loop computation.

2. Implementation details

2.1. Definitions

We consider a set of N master integrals f⃗ fulfilling an ordinary system of differential equations

∂ f⃗ (x, ϵ)
∂x

= M(x, ϵ)f⃗ (x, ϵ), (2)

where x is a kinematic variable,M(x, ϵ) is an N × N-matrix and ϵ is a regulator in d = 4 − 2ϵ dimensions in the context of dimensional
regularization. We restrict ourselves to the case

M(x, ϵ) =

∑
xj∈S

∑
k≥0

M
(xj)
k (ϵ)

(x − xj)k+1 +

∑
k≥0

xkMk(ϵ), (3)

where S is the set of all finite singularities and M
(xj)
k and Mk(ϵ) are independent of x. In particular, singularities xj depending on ϵ are

forbidden. In many physically relevant cases one can use a trial and error approach to find a basis of master integrals f⃗ fulfilling the
restriction (3). The main strategy of our implementation is to keep the system always in the form of (3) since here the x-dependence is
explicit.

A singularity xj < ∞ has Poincaré rank p ifM
(xj)
p ̸= 0 andM

(xj)
k = 0 for k > p. In addition to the finite singularities, the system might

also have a singularity at ∞. The Poincaré rank p of a singularity at ∞ is defined as the Poincaré rank of the singularity at y = 0 of the
systemM(1/y, ϵ)/y2. So (3) has Poincaré rank p > 0 at ∞ ifMp−1 ̸= 0 andMk = 0 for k ≥ p, and Poincaré rank p = 0 at ∞ if allMk = 0
and

∑
xj∈S
M

(xj)
0 ̸= 0. If allMk = 0 and

∑
xj∈S
M

(xj)
0 = 0, the system is not singular at ∞.

Let p be the Poincaré rank of a singularity xj < ∞, then the generalized Poincaré rank (or Moser rank) [11] of this singularity is defined
as p + r/n − 1, where r = rankM

(xj)
p and n is the dimension of the system.

A system

M(x, ϵ) =

∑
xj∈S

M
(xj)
0 (ϵ)

x − xj
, (4)

where all singularities have Poincaré rank zero is called Fuchsian, and a system

M(x, ϵ) = ϵ
∑
xj∈S

M̂
(xj)
0

x − xj
, (5)

where M̂
(xj)
0 is no longer a function of ϵ, is said to be in ϵ-form. A change of basis

g⃗(x, ϵ) = T
−1(x, ϵ)f⃗

modifies the system (2) to

∂ g⃗(x, ϵ)
∂x

= M̃(x, ϵ)g⃗(x, ϵ),

with

M̃(x, ϵ) = T
−1(x, ϵ)M(x, ϵ)T(x, ϵ) − T

−1(x, ϵ)
∂

∂x
T(x, ϵ). (6)

We assume the master integrals in f⃗ to be ordered in a way that a block-triangular structure of the system is obtained (for details see
e.g. [8]). We will often make use of this block-triangular structure. Therefore we write

M =

(
A 0 0
B C 0
D E F

)
, (7)

and use the same indices as in (3) for thematricesA, . . . ,F (e.g.C
(xj)
k (ϵ)). The blockC is called the active block as we apply Lee’s algorithm

to this block. As A to F are matrices as well, the definition of what we call the active block is more or less arbitrary as long as a block-
triangular structure is obtained. But from a computational point of view a small dimension of the active block is preferable since this
reduces the complexity of the resulting operations. In the following, the matrices A

(xj)
k , . . . ,F

(xj)
k and Ak, . . . ,Fk will be referred to as

coefficient matrices.
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