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a b s t r a c t

The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative
structural information about macromolecules in their natural environment. In the algorithm a Bayesian
model gives rise to a multivariate probability distribution describing the uncertainty of the structure
determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety
of smFRET networks, we established an MCMC based sampling engine that approximates the target
distribution and requires no parameter specification by the user at all. For an efficient local exploration
we automatically adapt themultivariate proposal kernel according to the shape of the target distribution.
In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully
adaptive with respect to temperature spacing and number of chains. Since themolecular surrounding of a
dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which
can be selected for every dyemolecule individually. Thesemodels allow the user to represent the smFRET
network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen
model combination is provided.
Programme summary
Programme Title: Fast-NPS
Programme Files doi: http://dx.doi.org/10.17632/7ztzj63r68.1
Licencing provisions: Apache-2.0
Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++
Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for
macromolecular structures from smFRET data.
Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Structural biology is a key field of life sciences. It aims to give
a picture of life at the molecular level, which is a prerequisite for
obtaining a mechanistic molecular understanding of cellular pro-
cesses. Modern techniques, such as X-ray crystallography or cryo-
EM, can resolve the structure ofmacromolecules up to anÅngström
level. However, in order to understand nature it is important to
not only resolve the static structure of macromolecules in artificial
environments, but also to elucidate their dynamic structure or

✩ This paper and its associated computer programme are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
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even transient dynamic complexes in an aqueous milieu. Here, an
interesting tool is Förster resonance energy transfer (FRET ) [1]. FRET
has been termed amolecular ruler, since the distance range that can
be measured is on the length scale of proteins [2]. Furthermore,
single-molecule FRET (smFRET ) has become a widely used tech-
nique for studying the dynamics of macromolecular complexes
[3–5]. While distance information can be obtained, determining
distances quantitatively remains a challenge [6–8]. Using the tri-
lateration of several smFRET distances one can determine an un-
known position with respect to a macromolecular complex [9,10].
Moreover, smFRET results have been combined with other tech-
niques for structural biology approaches [11–13].

We present the Fast-Nano-Positioning System (Fast-NPS), an
advanced software package that utilises smFRET measurements
between dye molecules (further referred to simply as dyes) to
gain quantitative structural information about macromolecular
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complexes. It aims to localise the unknown dye positions, the so-
called antennas, bymeans of dyes covalently bound to known posi-
tions on a macromolecular complex, the satellites, with a Bayesian
model. In Bayesian statistics the degree of knowledge about an
unknown quantity is expressed by a probability distribution con-
ditional on the evidence obtained from experimental data, the so-
called posterior [14].

In Fast-NPS the data constitutes the measured average
smFRET efficiencies with experimental error, the determined
isotropic Förster radii and the measured steady-state fluorescence
anisotropies [15,16]. The unknown quantities of interest are the
positions of the antennas. Since not only the positions, but also the
orientations of the dyes have a tremendous effect on themeasured
smFRET efficiencies, their transition dipole moments (TDMs) are
explicitly modelled in Fast-NPS.

In previous works the Nano-Positioning System (NPS) has al-
ready been used to study the position of the exiting RNA from
the eukaryotic RNA polymerase II [10] and to investigate the in-
fluence of the transcription factor TFIIB on the position of the
nascent RNA [11]. Further, the position of the non-template and
upstream DNA in yeast Polymerase II transcription elongation
complexes [17] and the architecture of a minimal Polymerase II
open promoter complex [18] were analysed. Moreover, NPS was
also applied to shed light on the archaeal initiation complex [19].

In Section 2 we recapitulate the Bayesian framework of NPS
which forms the basis for the analysis of smFRET data in order
to gain structural information frommacromolecular complexes. In
Section 3.1 we present a novel Markov Chain Monte Carlo (MCMC)
algorithm, which forms the basis for Fast-NPS, to analyse the pos-
terior in order to extract structural information from an arbitrarily
large smFRET network using standard desktop computers in a
reasonable amount of time. In Section 3.2 we establish the theory
of individual dye models, accounting for the different spatial be-
haviour over time depending on the dye’s molecular environment.
A method to assess the consistency of the prior information with
the smFRET data is presented in Section 3.3. In Section 4 we apply
the dyemodels to a real smFRET network guided by the help of our
consistency check in order to maximise the localisation precision.
In Section 5 we give a comprehensive discussion of Sections 3–4
and end with a conclusion and a future outlook in Section 6.

2. Theory

In Bayesian statistics the normalised posteriorP is proportional
to the product of likelihood L and prior Π , i.e. P ∝ L · Π . The
likelihood is the probability distribution of the parameters, in our
case the dye positions and orientations, given the experimental
data and a statistical model. According to the central limit theorem
the distribution of the average smFRET efficiency ⟨E⟩ converges
to a normal distribution centred around E(E), the expectation of
the smFRET efficiency E, when the number of data points becomes
large. Assuming that there is a unique configuration of dyes giving
rise to the data, E(E) is the associated smFRET efficiency. Thus,
the likelihood function is defined by a normal distribution centred
around the average smFRET efficiency with standard deviation σ ,
where σ is the experimentally determined measurement error,
i.e. we have L := N (⟨E⟩, σ 2)1 [15]. Further, the dependence of
the average smFRET efficiency ⟨E⟩ on the distance d between donor
and acceptor and their Förster distance R is given by

⟨E⟩ =
1

1 + (d/R)6
. (1)

1 For simplicity both randomvariables and their realisationswill be denotedwith
the same symbols throughout this paper.

The Förster distance R is given by

R = Riso 6

√
3
2
κ2, (2)

where the orientation factor κ2 is a function of the positions and
TDMs of the dye molecules [1]. Depending on the relative ori-
entation of donor and acceptor it can take values from 0–4 [20].
When both dye molecules are free to rotate and reorient faster
than the fluorescence lifetime of the donor in the presence of the
acceptor, κ2 adopts its isotropic value of 2/3, such that all ori-
entation effects vanish. Under this condition the Förster distance
is called the isotropic Förster distance Riso [21]. The position of a
dye i is parametrised by xi, yi, zi and its TDM by an azimuthal
angle θi and a polar angle ϕi. Substitution of Eq. (1) into the like-
lihood represents a transformation from the range of the average
smFRET efficiency to the configuration space Ω of both dyes. The
parameter vector of the likelihood defined on Ω is then x :=

(x1, y1, z1, θ1, ϕ1, x2, y2, z2, θ2, ϕ2)T .
Fast-NPS is a hybrid approach. The prior knowledge about the

position of the dye molecule is gained from an accessible volume
(AV ) computation with respect to the structure of the molecule of
interest obtained from X-ray crystallography, NMR studies or cryo-
EM [11]. These volumes serve as a flat position prior for Fast-NPS.
Finally, the prior for the TDMs is uniform over the unit hemisphere
(see Section 3.1.3).

Since the unambiguous localisation of one or more antennas
requires themeasurement against several satellites, the joint likeli-
hood is given by an uncorrelated (assuming independentmeasure-
ments)multivariate normal distribution in the space of the average
smFRET efficiencies. The joint prior consists then of the product of
the uniform distributions on the individual AVs. Finally, according
to Bayes’ law the joint posterior is proportional to the product of
joint likelihood and joint prior [15]. The parameter vector is then
given by x := (x1, y1, z1, θ1, ϕ1, . . . , xn, yn, zn, θn, ϕn)T , where n
denotes the number of dyes in the network.

In the following section we focus on the development of an
adaptive sampling engine for the structural inference of a large
variety of smFRET networks.

3. Methods

3.1. Algorithm

In Section 2 we have defined a probability distribution on the
configuration space Ω providing us with the information how
likely a realisation x is. The structural information, which we can
extract from the posterior, is given by a volume which specifies
how likely it is that a certain dye position is found inside. Although
the posterior can be written in a closed form, the marginalisation
down to the position of one dye is analytically unfeasible. In order
to solve this problem we chose to develop a sampling algorithm
which produces a set of realisations {x}, so-called samples, drawn
from the posterior. Then, the marginalisation is reduced to the
simple projection onto the positions of the dye of interest.

Sincewewant to express a complete lack of position knowledge
about an antenna when starting the analysis, the search space cov-
ers usually more than 25 times the volume of the macromolecule.
However, themajor posteriormasswhich is displayed by a credible
volume, i.e. the smallest volume that includes a certain probability,
covers only a small fraction of this search space (Fig. 1A). In order
to efficiently draw samples from the posterior, we have chosen an
importance sampling algorithm, or more specifically, a Metropolis-
within-Gibbs sampler [22].

Localisation geometry enforced by limitations of biochemical
labelling strategies can also induce banana- or spherical shell-like
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