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a b s t r a c t

A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the
computation of harmonic vibrational properties in molecules and solids. The practical implementation
using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-
electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the
calculations with respect to numerical parameters is carefully investigated and a systematic comparison
with finite-difference approaches is performed both for finite (molecules) and extended (periodic)
systems. Finally, the scaling tests and scalability tests on massively parallel computer systems
demonstrate the computational efficiency.
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1. Introduction

Density-functional theory (DFT) [1,2] is to date themost widely
applied method to compute the ground-state electronic structure
and total energy for polyatomic systems in chemistry, physics, and
material science. Via the Hellmann–Feynman [3,4] theorem the
DFT ground state density also provides access to the first deriva-
tives of the total energy, i.e., the forces acting on the nuclei and
the stresses acting on the lattice degrees of freedom. The forces
and stress in turn can be used to determine equilibrium geome-
tries with optimization algorithms [5], to traverse thermodynamic
phase space with ab initio molecular dynamics [6], and even to
search for transition states of chemical reactions or structural tran-
sitions [7]. Second and higher order derivatives, however, cannot
be calculated on the basis of the ground state density alone, but also
require knowledge of its response to the corresponding perturba-
tion: The 2n + 1 theorem [8] proves that the nth order derivative
of the density/wavefunction is required to determine the 2n+ 1th
derivative of the total energy. For example, for the calculation of
vibrational frequencies and phonon band-structures (second order
derivative) the response of the electronic structure to a nuclear dis-
placement (first order derivative) is needed. These derivatives can
be calculated in the framework of density-functional perturbation
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theory (DFPT) [9–11] viz. the coupled perturbed self-consistent
field (CPSCF) method [12–17].1 DFPT and CPSCF then provide ac-
cess to many fundamental physical phenomena, such as super-
conductivity [18,19], phonon-limited carrier lifetimes [20–22] in
electron transport and hot electron relaxation [23,24], Peierls in-
stabilities [25], the renormalization of the electronic structure due
to nuclear motion [26–35], Born effective charges [36], phonon-
assisted transitions in spectroscopy [37–39], infrared [40] as well
as Raman spectra [41], and much more [42].

In the literature, implementations of DFPT using a reciprocal-
space formalism have been mainly reported for plane-wave (PW)
basis sets for norm-conserving pseudopotentials [9,10,36], for
ultrasoft pseudopotentials [43], and for the projector augmented
wave method [44]. These techniques were also used for all-
electron, full-potential implementations with linear muffin tin
orbitals [45] and linearized augmented plane-waves [46,47]. For
codes using localized atomic orbitals, DFPT has been mainly
implemented to treat finite, isolated systems [12–17], but only
a few literature reports exist for the treatment of periodic
boundary conditions with such basis sets [48–50]. In all these
cases, which only considered perturbations commensurate with
the unit cell (Γ -point perturbations), the exact same reciprocal-
space formalism has been used as in the case of plane-waves.

1 Formally, DFPT and CPSCF are essentially equivalent, but the term DFPT is more
widely used in the physics community, whereas CPSCF is better known in quantum
chemistry.
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Sun and Bartlett [51] have analytically generalized the formalism
to account for non-commensurate perturbations (corresponding
to non-Γ periodicity in reciprocal-space), but no practical
implementation has been reported.

In the aforementioned reciprocal-space implementations, each
perturbation characterized by its reciprocal-space vector q re-
quires an individual DFPT calculation. Accordingly, this formalism
can become computationally expensive quite rapidly, whenever
the response to the perturbations is required to be known on a
very tight q grid. To overcome this computational bottleneck, var-
ious interpolation techniques have been proposed in literature:
For instance, Giustino et al. [52] suggested to Fourier-transform
the reciprocal-space electron–phonon coupling elements to real-
space. The spatial localization of the perturbation in real-space (see
Fig. 1) allows an accurate interpolation by using Wannier func-
tions as a compact, intermediate representation. In turn, this then
enables a back-transformation onto a dense q grid in reciprocal-
space.

To our knowledge, however, no real-space DFPT formalism that
directly exploits the spatial localization of the perturbations under
periodic boundary conditions has been reported in the literature,
yet. This is particularly surprising, since real-space formalisms
have attracted considerable interest for standard ground-state DFT
calculations [53–59] in the last decades due to their favorable
scaling with respect to the number of atoms and their potential for
massively parallel implementations. Formally, one would expect
a real-space DFPT formalism to exhibit similar beneficial features
and thus to facilitate calculations of larger systems with less
computational expense on modern multi-core architectures.

Wehere derive, implement, and validate a real-space formalism
for DFPT. The inspiration for this approach comes from the work of
Giustino et al. [52], who demonstrated that Wannierization [60]
can be used to map reciprocal-space DFPT results to real-
space, which in turn enables numerically efficient interpolation
strategies [61]. In contrast to these previous approaches, however,
our DFPT implementation is formulated directly in real space
and utilizes the exact same localized, atom-centered basis set
as the underlying ground-state DFT calculations. This allows us
to exploit the inherent locality of the basis set to describe the
spatially localized perturbations and thus to take advantage of
the numerically favorable scaling of such a localized basis set.
In addition, all parts of the calculation consistently rely on the
same real-space basis set. Accordingly, all computed response
properties are known in an accurate real-space representation
from the start and no potentially error-prone interpolation (re-
expansion) is required. However, this reformulation of DFPT also
gives rise to many non-trivial terms that are discussed in this
paper. For instance, the fact that we utilize atom-centered orbitals
require accounting for various Pulay-type terms [62]. Furthermore,
the treatment of spatially localized perturbations that are not
translationally invariantwith respect to the lattice vectors requires
specific adaptions of the algorithms used in ground-state DFT to
compute electrostatic interactions, electronic densities, etc. We
also note that the proposed approach facilitates the treatment of
isolated molecules, clusters, and periodic systems on the same
footing. Accordingly, we demonstrate the validity and reliability of
our approach by using the proposed real-space DFPT formalism to
compute the electronic response to a displacement of nuclei and
harmonic vibrations in molecules and phonons in solids.

The remainder of the paper is organized as follows. In Section 2
we succinctly summarize the fundamental theoretical framework
used in DFT, in DFPT, and in the evaluation of harmonic force
constants. Starting from the established real-space formalism for
ground-state DFT calculations, we derive the fundamental rela-
tions required to perform DFPT and lattice dynamics calculations
in Section 3. The practical and computational implications of these

Fig. 1. Periodic electronic density n(r) and spatially localized response of the
electron density dn(R)/dRI to a perturbation viz. displacement of atom∆RI shown
exemplarily for an infinite line of H2 molecules.

equations are then discussed in Section 4 using our own imple-
mentation in the all-electron, full-potential, numerical atomic or-
bitals based code FHI-aims [55,63,64] as an example. In Section 5
we validate our method and implementation for both molecules
and extended systems by comparing vibrational and phonon
frequencies computed with DFPT to the ones computed via finite-
differences. Furthermore, we exhaustively investigate the conver-
gence behavior with respect to the numerical parameters of the
implementation (basis set, system sizes, integration grids, etc.) and
we discuss the performance and scaling with system size. Eventu-
ally, Section 6 summarizes themain ideas and findings of this work
and highlights possible future research directions, for which the
developed formalism seems particularly promising.

2. Fundamental theoretical framework

2.1. Density-functional theory

In DFT, the total energy is uniquely determined by the electron
density n(r)

EKS = Ts[n] + Eext [n] + EH [n] + Exc[n] + Eion−−ion, (1)

in which Ts is the kinetic energy of non-interacting electrons, Eext
the electron-nuclear, EH the Hartree, Exc the exchange–correlation,
and Eion−−ion the ion–ion repulsion energy. All energies are
functionals of the electron density. Here we avoid an explicitly
spin-polarized notation, a formal generalization to collinear
(scalar) spin-DFT is straightforward.

The ground state electron density n0(r) (and the associated
ground state total energy) is obtained by variationally minimizing
Eq. (1)

δ

δn


EKS − µ


n(r) dr − Ne


= 0, (2)

whereby the chemical potential µ = δEKS/δn ensures that the
number of electrons Ne is conserved. This yields the Kohn–Sham
single particle equations

ĥKSψi =

t̂s + v̂ext(r)+ v̂H + v̂xc


ψi = ϵiψi, (3)

for the Kohn–ShamHamiltonian ĥKS . In Eq. (3) t̂s is the single parti-
cle kinetic operator, v̂ext the (external) electron-nuclear potential,
v̂H the Hartree potential, and v̂xc the exchange–correlation poten-
tial. Solving Eq. (3) yields the Kohn–Sham single particle states ψi
and their eigenenergies ϵi. The single particle states determine the
electron density via

n(r) =


i

f (ϵi)|ψi(r)|2, (4)

in which f (ϵi) denotes the Fermi–Dirac distribution function.
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