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a b s t r a c t

A high-order wavelet integral collocation method (WICM) is developed for general nonlinear boundary
value problems in physics. Thismethod is established based on Coiflet approximation ofmultiple integrals
of interval bounded functions combined with an accurate and adjustable boundary extension technique.
The convergence order of this approximation has been proven to be N as long as the Coiflet with
N−1 vanishing moment is adopted, which can be any positive even integers. Before the conventional
collocation method is applied to the general problems, the original differential equation is changed into
its equivalent form by denoting derivatives of the unknown function as new functions and constructing
relations between the low- and high-order derivatives. For the linear cases, error analysis has proven that
the proposedWICM is orderN , and condition numbers of relevantmatrices are almost independent of the
number of collocation points. Numerical examples of a wide range of nonlinear differential equations in
physics demonstrate that accuracy of the proposed WICM is even greater than N , and most interestingly,
such accuracy is independent of the order of the differential equation to be solved. Comparison to existing
numerical methods further justifies the accuracy and efficiency of the proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear boundary value problems (BVPs) [1] arise from al-
most every scientific and engineering field, especially mechanical
theory of beam and plate structures [2–4]. Commonly, the nonlin-
ear BVPs can be written into a general form [5]

T

x, y,

dy
dx

, . . . ,
dny
dxn


= 0, x ∈ [a, b] (1)

with corresponding boundary conditions, where T is a nonlinear
operator and y is an unknown function of x.

Since the solutions of nonlinear BVPs are critically important
for analyzing scientific and engineering problems, finding accurate
and efficient methods for solving Eq. (1) has attracted consider-
able research attention. In the last few decades, numerous meth-
ods have been developed [6–12]: for example, Wang and Wu [7]
proposed a fourth-order compact finite difference method (CFDM)
to solve nonlinear 2nth-order multi-point boundary value prob-
lems; Geng [8] studied the nonlinear four-point boundary value
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problems by applying the reproducing kernel Hilbert space meth-
ods (RKHSM); Behroozifar [10] suggested a spectral method based
on Bernstein polynomials (SMBP) for nonlinear differential equa-
tions with multi-point boundary conditions [10]; Liu et al. [6,12]
proposed a wavelet Galerkin method (WGM) for studying nonlin-
ear differential equations with Dirichlet and Neumann boundary
conditions. Moreover, there are still many other solution meth-
ods including the shooting method, series method, function space
method [13], homotopy analysis method [14] and high order finite
difference method [15] etc. Although, there are many alternative
ways to study the nonlinear BVPs [1], yet finding highly accurate
solutions to general nonlinear BVPs remains a challenge.

Wavelet theory is a newly developed powerful mathematical
tool that has shown its potential in the numerical analysis of differ-
ential equations [16,17]. Wavelet-based methods combined with
conventional Galerkin [16,18] or collocation techniques [17,19]
have been proposed for various nonlinear engineering problems.
In our recent works [6,20–22], an efficient WGM has been pro-
posed to solve the Bratu equation [6], large deformation bending
of circular and rectangular plates [20,22], and large deflection and
post-buckling analysis of nonlinearly elastic rods [21]. The numer-
ical results have considerably better accuracy thanmany other nu-
merical methods, and show their applicability to strong nonlinear
problems. However, just likemost other numericalmethods for the
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nonlinear BVPs, the convergence rate of the WGM can be affected
by the highest derivatives involved in the equations [4,6,20,21].

In this study,we construct amodifiedwavelet approximation of
n-tuple integrals of a function,whose accuracy is found higher than
the approximations of its derivatives, and interestingly indepen-
dent of the tuple of the integral. Based on this finding,we transform
the original nonlinear BVPs into its equivalent forms by defining
the derivatives of unknown functions as new functions and con-
structing relations between the low- and high-order derivatives.
When solving the transformed equation by using conventional col-
location method in terms of the proposed wavelet approximation
on n-tuple integrals, we show that the accuracy order can be any
positive even integer N = 4, 6, 8, . . ., for the Coiflet with compact
support [3N−1]. And this accuracy order is independent of the or-
ders of the original differential equations. Both error analysis and
nontrivial numerical examples are given for justifications.

2. Wavelet approximation of multiple integrals

The multi-resolution analysis of wavelet theory [23] states that
the function space L2(R) can be divided into a sequence of nested
subspaces {0} · · · ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R). A
set of orthogonal basis of the subspace Vj can be formed by

φj,k(x) = 2
j
2 φ(2jx − k), k ∈ Z, (2)

where φ(x) is the so-called orthogonal scaling function. A function
f (x) ∈ L2(R) can be approximated by projecting this function from
L2(R) to Vj as

f (x) ≈ Pjf (x) =


k

cj,kφj,k(x) (3)

where cj,k =


∞

−∞
f (x)φj,k(x)dx, and integer j is the so-called

resolution level. The scaling function with compact support can be
constructed by using a finite number of low-pass filter coefficients
pk in terms of the relation below:

φ(x) =


k

pkφ(2x − k) (4)

in which subscript k = 0, 1, 2, . . . , 3N − 1 for the Coiflet-type
wavelet, and N − 1 is the number of vanishing moments of the
corresponding wavelet function [24]. Such a scaling function has
the unique property of shifted vanishing moments:

∞

−∞

(t − M1)
kφ(t)dt = 0, 1 ≤ k < N (5)

whereM1 ,


∞

−∞
xφ(x)dx =


k∈Z pkk/2 is the first-ordermoment

of the scaling function. Based on this unique property, one has
cj,k ≈ 2−j/2f ( k+M1

2j
), such that the approximation of the function

can be written as [25]

f (x) ≈ Pjf (x) ≈ P̃jf (x) =

∞
k=−∞

fM1+kφ(2jx − k) (6)

where fM1+k = f (xM1+k), xM1+k = (M1 + k)/2j, and f (x) =

Pjf (x) = P̃jf (x) when f (x) is any polynomial with an order up
to N − 1, and

f (x) − P̃jf (x)

L2(R)

= O(2−jN) as long as f (x) ∈

L2(R) ∩ CN(R) [26].
If the function f (x) is defined on an interval, for instance, [0, 1],

then Eq. (6) can be rewritten as

f (x) ≈ P̃jf (x) =

2j−1
k=2−3N

fk+M1φ

2jx − k


. (7)

We define the n-tuple integral of the function f (x) as [27,28]

f

n(x) ,

 x

0

 ξn

0
· · ·

 ξ2

0
f (ξ1)dξ1dξ2 . . . dξn. (8)

Substituting Eq. (7) to Eq. (8) yields

f

n(x) ≈ f


n

P̃j
(x) =

2j−1
k=2−3N

fk+M1φ


n

j,k(x), (9)

where

φ


n

j,k(x) ,

 x

0

 ξn

0
· · ·

 ξ2

0
φ(2jξ1 − k)dξ1dξ2 . . . dξn,

f

n

P̃j
(x) =

 x

0

 ξn

0
· · ·

 ξ2

0
f

n

P̃j
(ξ1)dξ1dξ2 . . . dξn.

Theorem 1. If f (x) ∈ L2(R) ∩ CN(R), then the accuracy of approxi-
mation (9) can be estimated asf n(x) − f


n

P̃j
(x)

L2[0,1]

≤ 2−jN Ω(3N − 1)
N!(n − 1)!

(M1 − τ)NΘφ(τ)
 · xn−1


L2[0,1] (10)

and

|f

n − f


n

P̃j
| ≤ 2−jN Ω(3N − 1)

N!(n − 1)!
|(M1 − τ)NΘϕ(τ)xn−1

| (11)

where Θ = max[|f (N)(x)|], x ∈ [0, 3N − 1], Ω = 1+ (3N − 2)/2j,
and τ ∈ [0, 3N − 1].

Proof. Using Taylor expansion of f (y) at the point x gives:

f (y) =

N−1
n=0


f (n)(x)

n!
(y − x)n


+

f (N)(ϑ)

N!
(y − x)N (12)

where f (n)(x) , dnf (x)/dxn and ϑ is on the segment connecting y
and x. Assigning y = (k + M1)/2j, k ∈ Z into Eq. (12) gives the
expansion of fk+M1 as

fk+M1 =

N−1
n=0


f (n)(x)

n!


k + M1

2j
− x

n

+
f (N)(ϑ)

N!


k + M1

2j
− x

N

.

Further considering the property of Coiflet expansion


k∈Z
(k+M1 − 2jx)nφ(2jx− k) = 0n for 0 ≤ n < N , then for x ∈ [0, 1],
Eq. (7) can be rewritten into [26]

P̃jf (x) = f (x)

+ 2−jN


2j>k>2−3N

f (N)(ϑj,k)

N!
(k + M1 − 2jx)Nφ(2jx − k), (13)

where ϑj,k becomes locating between y = (k + M1)/2j and x,
and Supp[φ(x)] = [0, 3N − 1] is considered for determining the
range of summation index k. The n-tuple integral of Eq. (13) can be
expressed as

f

n

P̃j
(x) = f


n(x) + 2−jN


2j>k>2−3N

 x

0

 ξn

0
· · ·

 ξ2

0

f (N)(ϑj,k)

N!

× (k + M1 − 2jξ1)
Nφ(2jξ1 − k)dξ1dξ2 · · · dξn. (14)
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